Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Radio-opaque Micelles for X-ray Imaging

Zhiyong Wang A B , Teddy Chang A , Luke Hunter B , Andrew M. Gregory A , Marcel Tanudji C , Steven Jones C and Martina H. Stenzel A D
+ Author Affiliations
- Author Affiliations

A Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

B School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

C Sirtex Medical Limited, North Sydney, NSW 2060, Australia.

D Corresponding author. Email: m.stenzel@unsw.edu.au




Martina Stenzel studied chemistry at the University of Bayreuth and completed her Ph.D. in 1999 at the University of Stuttgart, Germany. In 2002, she took on a position as a lecturer at the University of New South Wales and worked in the Centre for Advanced Macromolecular Design (CAMD). She is now an ARC Future Fellow and Professor. Her research interest is focused on the synthesis of functional polymers such as glycopolymers and other polymers for biomedical applications. Martina has published more than 190 peer-reviewed papers and 8 book chapters. She is currently on the ARC College of Experts, is an editor of the Australian Journal of Chemistry and also serves on several editorial advisory boards. She has received a range of awards including the 2011 Le Fèvre Memorial Prize from the Australian Academy of Science.

Australian Journal of Chemistry 67(1) 78-84 https://doi.org/10.1071/CH13391
Submitted: 25 July 2013  Accepted: 23 August 2013   Published: 10 October 2013

Abstract

Block copolymers based on iodinated monomers were prepared with the aim of creating nanoparticles as contrast agents suitable for X-ray imaging. Reversible addition–fragmentation chain-transfer polymerization was employed to synthesize block copolymers based on oligo(ethylene glycol) methylether methacrylate (OEGMEMA) and 2-[2′,3′,5′-triiodobenzoyl]oxyethyl methacrylate (METB). The polymerization of METB was found to be slow owing to the low solubility of the monomer, which does not allow high enough concentration to achieve a fast rate of polymerization. However, the block copolymerization was well controlled, resulting in several block copolymers, POEGMEMA-b-PMETB, which were further investigated in regards to their self-assembly in water. Micelles were prepared using POEGMEMA55-b-PMETB18, POEGMEMA55-b-PMETB32, POEGMEMA100-b-PMETB22, and POEGMEMA100-b-PMETB32. Transmission electron microscopy and dynamic light scattering revealed micelle sizes between 30 and 45 nm depending on the block size. The micelles were found to show a strong contrast similar to BaSO4 and Visipaque (iodixanol) during X-ray analysis. These micelles can now further be employed as drug carriers or can be conjugated to a bioactive group for targeting.


References

[1]  N. F. Schwenzer, F. Springer, C. Schraml, N. Stefan, J. Machann, F. Schick, J. Hepatol. 2009, 51, 433.
         | Crossref | GoogleScholarGoogle Scholar | 19604596PubMed |

[2]  J. D. Hopwood, S. Mann, Chem. Mater. 1997, 9, 1819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlCmt70%3D&md5=87f957a264bb45b5bcde9525feaab4beCAS |

[3]  Y. Liu, K. Ai, L. Lu, Acc. Chem. Res. 2012, 45, 1817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSksbzJ&md5=40b284074084e131be1600b822589e10CAS | 22950890PubMed |

[4]  S. K. Morcos, Br. J. Radiol. 2005, 78, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzoslaqug%3D%3D&md5=9780f5d6cdd52d87f949e23f6cdbf278CAS | 16046418PubMed |

[5]  K. A. Aamer, K. L. Genson, J. Kohn, M. L. Becker, Biomacromolecules 2009, 10, 2418.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Gqur0%3D&md5=f5a7171c276963c6000efc337aee2652CAS | 19645443PubMed |

[6]  A. L. Carbone, M. Song, K. E. Uhrich, Biomacromolecules 2008, 9, 1604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFaktbw%3D&md5=0ed4013231b887739b7ff91b8973cc50CAS | 18481891PubMed |

[7]  (a) A. Galperin, D. Margel, J. Baniel, G. Dank, H. Biton, S. Margel, Biomaterials 2007, 28, 4461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSqtrw%3D&md5=bd723e4305abbdc18f55dafa6d5cab35CAS | 17644171PubMed |
      (b) A. Hagit, B. Soenke, B. Johannes, M. Shlomo, Biomacromolecules 2010, 11, 1600.
      (c) K. Saralidze, Y. B. J. Aldenhoff, M. L. W. Knetsch, L. H. Koole, Biomacromolecules 2003, 4, 793.

[8]  S. Dawlee, A. Jayakrishnan, M. Jayabalan, J. Mater. Sci. Mater. Med. 2009, 20, 243.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  K. Saralidze, L. H. Koole, M. L. W. Knetsch, Materials 2010, 3, 3537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlyrsL8%3D&md5=58cc17665bb59ac4d508a3cac4d752dbCAS |

[10]  A. Galperin, D. Margel, S. Margel, J. Biomed. Mater. Res. A 2006, 79A, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsLjP&md5=99c21b8a0b07bde57c12382bc8e32fc7CAS |

[11]  A. Hagit, B. Soenke, B. Johannes, M. Shlomo, Biomacromolecules 2010, 11, 1600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Shu7s%3D&md5=534caf109ac49ebb4e06caee0005e2faCAS | 20443579PubMed |

[12]  K. E. deKrafft, Z. Xie, G. Cao, S. Tran, L. Ma, O. Z. Zhou, W. Lin, Angew. Chem. Int. Ed. 2009, 48, 9901.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2hsrzI&md5=9788fa19feebf9415f30cad23a6ef604CAS |

[13]  T. Wharton, L. J. Wilson, Bioorg. Med. Chem. 2002, 10, 3545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms12isr4%3D&md5=e355882c3891b82c1768f2b29f42d544CAS | 12213469PubMed |

[14]  D. Mawad, H. Mouaziz, A. Penciu, H. Méhier, B. Fenet, H. Fessi, Y. Chevalier, Biomaterials 2009, 30, 5667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCgu7Y%3D&md5=89d5685344bdd799e0905558e4280e5fCAS | 19577801PubMed |

[15]  D. Mawad, L. A. Poole-Warren, P. Martens, L. H. Koole, T. L. B. Slots, C. S. J. v. Hooy-Corstjens, Biomacromolecules 2008, 9, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOhu7bO&md5=a042b5fcf37b264e1b180e513bde6114CAS | 18047286PubMed |

[16]  M. Yokoyama, J Experimental &. Clin. Med. 2011, 3, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGnsbzL&md5=837bc98211ee3434c94bcdf5f73f3f97CAS |

[17]  (a) G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2012, 65, 985.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmu7%2FE&md5=aa37bfea601cd67a23853d2d03121563CAS |
      (b) E. Rizzardo, D. H. Solomon, Aust. J. Chem. 2012, 65, 945.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. Gregory, M. H. Stenzel, Prog. Polym. Sci. 2012, 37, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt7%2FO&md5=4929d055a1c8e8e22a2cc1db57ee33d8CAS |

[19]  A. Feldermann, M. L. Coote, M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, J. Am. Chem. Soc. 2004, 126, 15915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslegsb8%3D&md5=2e194140ec5475024282498b2c010bd1CAS | 15571417PubMed |

[20]  V. T. Huynh, P. de Souza, M. H. Stenzel, Macromolecules 2011, 44, 7888.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SltLnE&md5=b988c45924318352499c4550fa1b48f4CAS |

[21]  K. H. Wong, T. P. Davis, C. Bamer-Kowollik, M. H. Stenzel, Polymer 2007, 48, 4950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFyrsb8%3D&md5=dbc2cf8c1fc8a55d9a852bd63c5d4913CAS |

[22]  (a) A. Halperin, Macromolecules 1987, 20, 2943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFyntrs%3D&md5=c667720f4f09ac09df7841823d777119CAS |
      (b) J. Noolandi, K. M. Hong, Macromolecules 1983, 16, 1443.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Förster, M. Zisenis, E. Wenz, M. Antonietti, J. Chem. Phys. 1996, 104, 9956.
         | Crossref | GoogleScholarGoogle Scholar |