Recyclable Textiles Functionalized with Reduced Graphene Oxide@ZnO for Removal of Oil Spills and Dye Pollutants
Jinfeng Wang A , Takuya Tsuzuki A C D , Bin Tang A , Lu Sun A , Xiujuan J. Dai A , Gayathri D. Rajmohan A , Jingliang Li A and Xungai Wang A B DA Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, Vic. 3217, Australia.
B Ministry of Education Key Laboratory for Textile Fibers and Products, Wuhan Textile University, Wuhan 430077, China.
C Research School of Engineering, College of Engineering and Computer Science, Australian National University, Ian Ross Building 31, North Road, Canberra, ACT 0200, Australia.
D Corresponding authors. Email: takuya.tsuzuki@anu.edu.au; xungai.wang@deakin.edu.au
Associate Professor Takuya Tsuzuki received his Ph.D. in condensed matter physics from Kyoto University, Japan. He was Chief Technology Officer of one of the first nanotechnology companies in Australia. He is internationally recognised for his expertise in nanoparticulate materials and is leading a research team on nanotechnology for sustainability. |
Professor Xungai Wang holds a Ph.D. in fibre science and technology from the University of New South Wales. He is the only Australian recipient of the Fiber Society Distinguished Achievement Award. He is also a Fellow of the Textile Institute and has published over 200 papers in leading international research journals. |
Australian Journal of Chemistry 67(1) 71-77 https://doi.org/10.1071/CH13323
Submitted: 24 June 2013 Accepted: 15 August 2013 Published: 30 August 2013
Abstract
A novel recyclable and flexible membrane was prepared for the removal of oil spills and organic dye pollutants, by functionalizing polyester textiles with reduced graphene oxide@ZnO nanocomposites using a layer-by-layer technique. The membrane showed efficient water/oil separation, and the amount of oil adsorbed by the membrane could be up to 23 times its own weight. The adsorption capacity was largely retained during many adsorption recycling cycles. The membrane also displayed highly efficient removal of a dye pollutant from water under simulated sunlight. The membrane maintained a near-original removal efficiency after five cycles of dye removal. This new type of membrane may find practical applications in the large-scale separation of organic pollutants from water, particularly in the field of oil spills clean-up and dye removal from industrial effluent.
References
[1] A. B. Nordvik, J. L. Simmons, K. R. Bitting, A. Lewis, T. Strom-Kristiansen, Spill Sci. Technol. Bull. 1996, 3, 107.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVeqsLc%3D&md5=70641f565f108b643ee0ae861c40c715CAS |
[2] B. Meunier, Science 2002, 296, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWisL8%3D&md5=5548ef111df9ed57df3ae5516f8d5d89CAS | 11951021PubMed |
[3] L. P. Gossen, L. M. Velichkina, Petrol. Chem. 2006, 46, 67.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Nature 2008, 452, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFCns7s%3D&md5=cbb78d0be94a873e3605d91b1d84efb8CAS | 18354474PubMed |
[5] K. Y. Ho, G. McKay, K. L. Yeung, Langmuir 2003, 19, 3019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFCgtr0%3D&md5=20a555f19a007dd015d35263257289ecCAS |
[6] Z. Wu, H. Joo, K. Lee, Chem. Eng. J. 2005, 112, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWit7%2FO&md5=a497ff546883109a38f05faa85abeb18CAS |
[7] S. B. Haderlein, K. W. Weissmahr, R. P. Schwarzenbach, Environ. Sci. Technol. 1996, 30, 612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFWguw%3D%3D&md5=4cc12036c578053a39c0a6063184c536CAS |
[8] M. Mohammadi, A. J. Hassani, A. R. Mohamed, G. D. Najafpour, J. Chem. Eng. Data 2010, 55, 5777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyksLrI&md5=c535b84e22d7e467f8404a7fbcbdf094CAS |
[9] D. J. Yang, Z. F. Zheng, H. Y. Zhu, H. W. Liu, X. P. Gao, Adv. Mater. 2008, 20, 2777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVyntrs%3D&md5=5863852b3502624547283c3348d824deCAS |
[10] N. Savage, M. S. Diallo, J. Nanopart. Res. 2005, 7, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWhsLw%3D&md5=57cf96f319b60d804ef4b530b84907adCAS |
[11] I. Ali, Chem. Rev. 2012, 112, 5073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFWjs78%3D&md5=9fe29afdea2f6680a23c9ae5c90e1c93CAS | 22731247PubMed |
[12] T. Ren, Y. Si, J. Yang, B. Ding, X. Yang, F. Hong, J. Yu, J. Mater. Chem. 2012, 22, 15919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCjs7rE&md5=d3e46e5ca29a59bfc5eb7c12027ee7ddCAS |
[13] V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang, K. S. Kim, ACS Nano 2010, 4, 3979.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGmt7s%3D&md5=4850504f0d937a36440a93ab5f5a1807CAS | 20552997PubMed |
[14] X. L. Wu, L. Wang, C. L. Chen, A. W. Xu, X. K. Wang, J. Mater. Chem. 2011, 21, 17353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgt7bF&md5=d25b1edfdc96bdbb041dc4af68126d6cCAS |
[15] M. Liu, C. Chen, J. Hu, X. Wu, X. Wang, J. Phys. Chem. C 2011, 115, 25234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaktb3M&md5=e891a94b5eb98cf22ef29d7d2850a0d9CAS |
[16] L. C. A. Oliveira, R. V. R. A. Rios, J. D. Fabris, V. Garg, K. Sapag, R. M. Lago, Carbon 2002, 40, 2177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWhur8%3D&md5=7b81325b4f613f150eba6561cc7eb3adCAS |
[17] X. Chen, K. F. Lam, Q. Zhang, B. Pan, M. Arruebo, K. L. Yeung, J. Phys. Chem. C 2009, 113, 9804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslemu7w%3D&md5=b2c46058ba4b3a5a91ee70c8f3cb13fdCAS |
[18] B. C. Kim, J. Lee, W. Um, J. Kim, J. Joo, J. H. Lee, J. H. Kwak, J. H. Kim, C. Lee, H. Lee, R. S. Addleman, T. Hyeon, M. B. Gu, J. Hazard. Mater. 2011, 192, 1140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVygtL%2FI&md5=d2460052d1dd001bc885f8ba01a3e08aCAS | 21752538PubMed |
[19] A. Sinha, N. R. Jana, Chem. Commun. 2012, 48, 9272.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajs7%2FL&md5=7b5ca6391715e7d7e7db506baf1c7b38CAS |
[20] F. Ge, M. M. Li, H. Ye, B. X. Zhao, J. Hazard. Mater. 2012, 211–212, 366.
| Crossref | GoogleScholarGoogle Scholar | 22209322PubMed |
[21] G. Xi, B. Yue, J. Cao, J. Ye, Chem. – Eur. J. 2011, 17, 5145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVSmt7s%3D&md5=47d8bc0745a2e94a7055c0d5e2ff4f20CAS | 21432916PubMed |
[22] X. Xu, X. Shen, G. Zhu, L. Jing, X. Liu, K. Chen, Chem. Eng. J. 2012, 200–202, 521.
| Crossref | GoogleScholarGoogle Scholar |
[23] H. Chen, P. K. Chu, J. He, T. Hu, M. Yang, J. Colloid Interface Sci. 2011, 359, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltl2qsr8%3D&md5=502239eb41db5d97b40315d69e9c2a29CAS | 21507410PubMed |
[24] C. Yang, G. S. Zhang, N. P. Xu, J. Shi, J. Membr. Sci. 1998, 142, 235.
| Crossref | GoogleScholarGoogle Scholar |
[25] Z. L. Xu, T. S. Chung, Y. Huang, J. Appl. Polym. Sci. 1999, 74, 2220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslChsrk%3D&md5=449a2dd24764f2f577dd845037a80ad2CAS |
[26] E. Park, S. M. Barnett, Sep. Sci. Technol. 2001, 36, 1527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVeqsrc%3D&md5=ead7ab4a571d3e93514d3750f650281eCAS |
[27] D. M. Dotzauer, J. Dai, L. Sun, M. L. Bruening, Nano Lett. 2006, 6, 2268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVyku7g%3D&md5=f3b02bbeae4abe021058f77e1761e6bfCAS | 17034095PubMed |
[28] H. H. Li, Y. M. Cao, H. J. Qin, X. M. Jie, T. H. Wang, J. H. Liu, Q. Yuan, J. Membr. Sci. 2006, 279, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVyrsb0%3D&md5=953e1f148dc9114ca3cda0ec2ba6d8a0CAS |
[29] N. T. Cervin, C. Aulin, P. T. Larsson, L. Wagberg, Cellulose 2012, 19, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVyms7s%3D&md5=87b1097e9813ad6b13e5d7aaa6d14d91CAS |
[30] A. K. Kota, G. Kwon, W. Choi, J. M. Mabry, A. Tuteja, Nat. Commun. 2012, 3, 1025.
| Crossref | GoogleScholarGoogle Scholar | 22929782PubMed |
[31] G. Kwon, A. K. Kota, Y. X. Li, A. Sohani, J. M. Mabry, A. Tuteja, Adv. Mater. 2012, 24, 3666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVamt7o%3D&md5=83cb8841cf3a65717423394d09f3c252CAS | 22689385PubMed |
[32] J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong, F. Stellacci, Nat. Nanotechnol. 2008, 3, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFWjs78%3D&md5=de48666f26d81548309a688a3049a595CAS | 18654542PubMed |
[33] J. Wang, T. Tsuzuki, L. Sun, X. Wang, ACS Appl. Mater. Interfaces 2010, 2, 957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFOmtrk%3D&md5=5ef96bb41af8833bbd920be819a901ccCAS | 20423116PubMed |
[34] J. Zhang, G. Shen, W. Wang, X. Zhou, S. Guo, J. Mater. Chem. 2010, 20, 10824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyrtrjO&md5=6c62e37e3a2b4baa5548314800a30db7CAS |
[35] J. Hua, Z. Wang, J. Zhao, J. Zhang, R. Li, H. Nie, X. Sun, Colloid Polym. Sci. 2011, 289, 783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKksLg%3D&md5=cb04e7bfb3bb421e2523298a6e141fc6CAS |
[36] H. Li, S. Pang, S. Wu, X. Feng, K. Müllen, C. Bubeck, J. Am. Chem. Soc. 2011, 133, 9423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslajtLg%3D&md5=b80912f09ff616bcbfe8c37c0e0e1239CAS | 21574632PubMed |
[37] G. Williams, P. V. Kamat, Langmuir 2009, 25, 13869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGrs74%3D&md5=66ef4f8629c8fd9dc2801b17ec5b9697CAS | 19453127PubMed |
[38] G. Williams, B. Seger, P. V. Kamt, ACS Nano 2008, 2, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFCmsL0%3D&md5=7af405f23db6a8aa73b5c3d0b6456e3dCAS | 19206319PubMed |
[39] P. K. Malik, J. Hazard. Mater. 2004, 113, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVGgt70%3D&md5=14eeb222ff212e54b1f4a958bdf15f73CAS | 15363517PubMed |
[40] R. S. Juang, R. Tseng, F. C. Wu, Adsorption 2001, 7, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1ajtLc%3D&md5=95b2422ba15fd871d8f7af194713e4a3CAS |
[41] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXlt1yjuw%3D%3D&md5=ecea8b20beaae14f21b6ff28a0f115b7CAS |