Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Solvent-Induced Reversible Crystal-to-Amorphous Transformation Properties of Cobalt(ii) 4-Aminomethylpyridine-Sulfate with Chromotropism

Achareeya Cheansirisomboon A , Chaveng Pakawatchai B and Sujittra Youngme A C
+ Author Affiliations
- Author Affiliations

A Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

B Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

C Corresponding author. Email: sujittra@kku.ac.th

Australian Journal of Chemistry 66(4) 477-484 https://doi.org/10.1071/CH12433
Submitted: 21 September 2012  Accepted: 9 December 2012   Published: 25 January 2013

Abstract

The crystalline CoII coordination compound with empirical formula [Co(Hampy)2(H2O)4](SO4)2(H2O)3 (1); ampy = 4-aminomethylpyridine was obtained. The structure contains a mononuclear [Co(Hampy)2(H2O)4]4+ cation unit, two sulfate ions, and three lattice water molecules. The Co2+ cation shows an elongated octahedral geometry comprised of four oxygen atoms from water molecules at equatorial positions and two nitrogen atoms from Hampy ligands which are protonated at NH2. Each mononuclear cation unit is assembled by intermolecular hydrogen bonding and π–π stacking interactions by the coordinated and lattice water molecules, amino group, and sulfate anions to form a 3D supramolecular network. Investigations of the dynamic structural behaviour demonstrate that the title compound exhibits a solvent-induced reversible crystal-to-amorphous transformation with chromotropism when exposed to water and methanol vapour. This indicates that the dehydrated amorphous form, [Co(Hampy)2(SO4)2] 1A, may be utilised as an indicator for humidity and methanol vapour.


References

[1]  E. Y. Lee, M. P. Suh, Angew. Chem. Int. Ed. 2004, 43, 2798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFertL8%3D&md5=71f9ee8338ff52e20998548e7101118eCAS |

[2]  E. Y. Lee, S. Y. Jang, M. P. Suh, J. Am. Chem. Soc. 2005, 127, 6374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVWntrk%3D&md5=481805f515150df3e20b400b904e8196CAS |

[3]  K. Biradha, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKntrk%3D&md5=6cc2bd3c109e63691688ab6772b2bda7CAS |

[4]  K. Biradha, Y. Hongo, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKntrY%3D&md5=b5397082bfae0272f7c395cb2acb9f79CAS |

[5]  C. J. Kepert, M. J. Rosseinsky, Chem. Commun. 1999, 375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtV2hsrs%3D&md5=6fdf2171f65e5b38ec5fe5cfb0620dd3CAS |

[6]  K. Takaoka, M. Kawano, M. Tominaga, M. Fujita, Angew. Chem. Int. Ed. 2005, 44, 2151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1CqurY%3D&md5=a4e0302ad3410b6baf3670fd87589b5dCAS |

[7]  C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2005, 44, 1958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt12qt7g%3D&md5=1187b5f5725df2e3b3d262e7d5dd83e7CAS |

[8]  D. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 2004, 43, 5033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKrsbo%3D&md5=d6dc0c85d58b4e730fa919af50282309CAS |

[9]  N. L. Toh, M. Nagarathinam, J. J. Vittal, Angew. Chem. Int. Ed. 2005, 44, 2237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWru70%3D&md5=ce4441388faf8e08593b8b31f8d247d5CAS |

[10]  T. H. Kim, Y. W. Shin, J. S. Kim, J. Kim, Angew. Chem. Int. Ed. 2008, 47, 685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslamtb4%3D&md5=e68dfdfb8b46769fa853622888ae39a8CAS |

[11]  J. Y. Lee, S. Y. Lee, W. Sim, K. M. Park, J. Kim, S. S. Lee, J. Am. Chem. Soc. 2008, 130, 6902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslSmsLw%3D&md5=6d86b744527ea0625e030cd0ccee8d91CAS |

[12]  C. Hu, U. Englert, Angew. Chem. Int. Ed. 2005, 44, 2281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWqsro%3D&md5=1a0ab6b867abbba01d0ed021f7bde711CAS |

[13]  B. Rather, B. Moulton, R. D. B. Walsh, M. J. Zaworotko, Chem. Commun. 2002, 694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitF2ksrk%3D&md5=6fbc7ee5967f675a1aa51c2f98397555CAS |

[14]  S. Oliver, A. Kuperman, A. Lough, G. A. Ozin, Chem. Mater. 1996, 8, 2391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltV2gs7g%3D&md5=3c02afb662c2de19551e1df5e483b86aCAS |

[15]  W. Lin, O. R. Evans, R. G. Xiong, Z. Y. Wang, J. Am. Chem. Soc. 1998, 120, 13272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ymsLg%3D&md5=f3b7e488e0685bd80d16e93bc1a72b86CAS |

[16]  J. H. Kim, S. M. Hubig, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 2001, 123, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Ckt7o%3D&md5=023371d902804b4848311b301f9a24d4CAS |

[17]  J. J. Vittal, Coord. Chem. Rev. 2007, 251, 1781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVeltbo%3D&md5=1afded6fc0fc77138c5bed2d72627dbeCAS |

[18]  H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWguw%3D%3D&md5=c643641fb978abe721e1d864e8a74651CAS |

[19]  P. Sozzani, S. Bracco, A. Comotti, L. Ferretti, R. Simonutti, Angew. Chem. Int. Ed. 2005, 44, 1816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislWktbg%3D&md5=f5d449ec991b48c2a7b9e7ed18e35a12CAS |

[20]  T. K. Prasad, M. V. Rajasekharan, Cryst. Growth Des. 2006, 6, 488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFahs7rO&md5=89ef3988bc3798e8ef286f7a55c77a3aCAS |

[21]  J. Boonmak, M. Nakano, N. Chaichit, C. Pakawatchai, S. Youngme, Dalton Trans. 2010, 39, 8161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOhsrjI&md5=7f8e444ba8c86acd9a57d8876b04bfc7CAS |

[22]  A. Cheansirisomboon, C. Pakawatchai, S. Youngme, Dalton Trans. 2012, 41, 10698.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2jsb%2FJ&md5=d9e705ead525fb164fdd641b2e325857CAS |

[23]  (a) T. J. Prior, B. Yotnoi, A. Rujiwatra, Polyhedron 2011, 30, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVChsg%3D%3D&md5=7527ec657b4ba8ff2a8a642d0bed589eCAS |
      (b) S. D. Huang, R. G. Xiong, P. H. Sotero, J. Solid State Chem. 1998, 138, 361.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (OUP: Oxford).

[24]  SAINT 4.0 Software Reference Manual 2000 (Siemens Analytical X-Ray Systems, Inc.: Madison, WI).

[25]  G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data 2000 (University of Göttingen: Göttingen).

[26]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. R. Allan, A. D. Paton, K. Turvey, H. J. Bowley, D. L. Gerrad, Inorg. Chim. Acta 1987, 134, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXos1yitA%3D%3D&md5=857deeed2cc4b7973ba75bb7569f0617CAS |

[28]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds 1997, 5th edn (John Wiley & Sons: New York, NY).

[29]  E. E. Castellano, O. E. Piro, B. S. Parajon-Costa, E. J. Baran, Z. Naturforsch. 2002, 57, 657.
         | 1:CAS:528:DC%2BD38Xls12htbY%3D&md5=747c42dcacbe61b55091e6b45e448712CAS |

[30]  B. I. Uçar, H. Karabulut, O. Pasaõglu, A. Büuyükgüngör, A. Bulut, J. Mol. Struct. 2006, 787, 38.

[31]  O. Andac, S. Guney, Y. Topcu, V. T. Yilmaz, W. T. A. Harrison, Acta Crystallogr. C 2002, 58, m17.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Y. Çelik, E. Bozkurt, I. Uçar, B. Karabulut, J. Phys. Chem. Solids 2012, 73, 1010.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  E. Bozkurt, H. Ayaz, I. Uçar, B. Karabulut, Inorg. Chim. Acta 2012, 390, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWksb4%3D&md5=7255c2cec88e24019e7617c6c97ce7afCAS |

[34]  K. Takaoka, M. Kawano, T. Hozumi, S. Ohkoshi, M. Fujita, Inorg. Chem. 2006, 45, 3976.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1ylsLc%3D&md5=da4761850eac58e4776f42a2fa0f2610CAS |

[35]  M.-L. Sun, L. Zhang, Q.-P. Lin, J. Zhang, Y.-G. Yao, Cryst. Growth Des. 2010, 10, 1464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFejsbc%3D&md5=cefd00f794cee9fb1940e19954708cd1CAS |

[36]  (a) D. Bradshaw, J. E. Warren, M. J. Rosseinsky, Science 2007, 315, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Cksrs%3D&md5=d967a13a96849904f5da7c6372f27a94CAS |
      (b) S.-J. Fu, C.-Y. Cheng, K.-J. Lin, Cryst. Growth Des. 2007, 7, 1381.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C.-L. Chen, A. M. Goforth, M. D. Smith, C.-Y. Su, H.-C. zur Loye, Angew. Chem. Int. Ed. 2005, 44, 6673.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. G. Beauvais, M. P. Shores, J. R. Long, J. Am. Chem. Soc. 2000, 122, 2763.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7s%3D&md5=773b56724455a9f00d9826c7f5f8cd49CAS |

[38]  A. N. Khlobystov, N. R. Champness, C. J. Roberts, S. J. B. Tendler, C. Thompson, M. Schroder, CrystEngComm 2002, 4, 426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFKrt70%3D&md5=d455cd8032138de471ec7aa1a5ccbcc1CAS |