Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Aqueous Microemulsions as Efficient and Versatile Media for Transition-Metal-Catalyzed Reactions

Jason G. Taylor A and Jailton Ferrari B C
+ Author Affiliations
- Author Affiliations

A Departamento de Química, ICEB, Universidade Federal de Ouro Preto, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto-MG, Brazil.

B Departamento de Química, CCEN, Universidade Federal da Paraíba, UFPB, Campus I, João Pessoa, Paraíba, CEP 58051-970, Brazil.

C Corresponding author. Email: jferrari@quimica.ufpb.br




Jason Guy Taylor was born in Nottingham, UK, and completed his M.Chem. (Hons) degree at Nottingham Trent University (2004) which included a one-year sandwich placement working as a analytical chemist at AstraZeneca. He subsequently obtained his Ph.D. degree at Imperial College London (2008), working on the development of hydroamination catalysts in the group of Dr Mimi Hii. This was followed by a two-year spell working as a post-doctoral research fellow with Professor Carlos Roque D. Correia at UNICAMP, researching the application of the Heck-Matsuda reaction in asymmetric synthesis. He is currently pursuing an independent academic research career as an associate professor at the Universidade Federal de Ouro Preto. His research interests include the synthesis of bioactive heterocyclic compounds and the development of new catalytic methodologies, and their application in the synthesis of natural products and pharmaceuticals.



Jailton Ferrari was born in Bahia, Brazil. He graduated with a bachelor’s degree in chemistry (2000) from the Universidade Estadual do Sudoeste da Bahia (UESB) and, after teaching at the high school level for a short period of time, continued his studies in organic chemistry at the Universidade Federal da Bahia (UFBA). In 2003, he received a M.Sc. degree and, in 2007, completed his Ph.D. which focussed on the investigation of new methodologies for the synthesis of 2-pyridones and their bicyclic derivatives indolizidinones and quinolizidinones under the supervision of Professor Silvio Cunha. After finishing his Ph.D., he went to Campinas (SP, Brazil) for post-doctoral studies under guidance of Professor Carlos Roque D. Correia at Universidade Estadual de Campinas (UNICAMP) in the application of the Heck-Matsuda reaction in the synthesis of arylpirroles and chiral 4-aryldehydroproline derivatives. In 2010, after leaving the Correia group, he joined the Department of Chemistry at the Universidade Federal da Paraíba (UFPB) in João Pessoa (PB, Brazil). His research interests include the development of new synthetic methodologies with transition-metal catalysts.

Australian Journal of Chemistry 66(4) 470-476 https://doi.org/10.1071/CH12492
Submitted: 1 November 2012  Accepted: 18 December 2012   Published: 31 January 2013

Abstract

The search for efficient and versatile reaction medium to perform transition-metal-catalyzed reactions is a continuous challenge to the synthetic community. Organic solvents have been traditionally employed for this task, nevertheless, new environmentally friendly, safe, and economically viable alternatives are still highly sought after. In this context, herein, we present an overview of some interesting applications of aqueous microemulsions (oil-in-water, O/W) for transition metal catalyzed reactions as an alternative and promising aqueous-organic reaction medium that has been found to be a highly effective tool in overcoming some environmental or practical issues presented by traditional organic solvents.


References

[1]     (a) For selected general references on transition-metal-catalyzed C–C bond-forming reactions, see:Metal-Catalyzed Cross-Coupling Reaction (Eds A. de Meijere, F. Diederich) 2004, 2nd edn, Vols 1 and 2 (Wiley-VCH: Weinheim).
         (b) Transition Metals for Organic Synthesis (Eds M. Bellar, C. Bolm) 2004, 2nd edn (Wiley-VCH: Weinheim).
         (c) M. Beller, A. Zapf, in Handbook of Organopalladium Chemistry for Organic Synthesis (Eds E.-i. Negishi, A. de Meijeire) 2002, Vol. 1, pp. 1209–1222 (Wiley: New York, NY).

[2]  (a) For selected reviews on transition-metal-catalyzed C­–heteroatom bond-forming reactions, see: S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400.
         | 1:CAS:528:DC%2BD3sXpsFOqtbk%3D&md5=178e173807a3195b5502ec1537878efaCAS |
      (b) P. Espinet, A. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704.

[3]  (a) For selected examples on transition-metal-catalyzed reactions performed in traditional organic solvents, see: Z. Zhou, Y. Xie, Z. Du, Q. Hu, J. Xue, J. Shi, ARKIVOC 2012, vi, 164.
      (b) H.-J. Xu, Y.-Q. Zhao, X.-F. Zhou, J. Org. Chem. 2011, 76, 8036.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Komáromi, F. Szabó, Z. Novák, Tetrahedron Lett. 2010, 51, 5411.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) For a review on organic reactions performed in aqueous media, see: A. Chanda, V. Fokin, Chem. Rev. 2009, 109, 725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVSnsb8%3D&md5=e451cbc6e1a74212671c6eb4af9efc9dCAS |
      (b) V. Polshettiwar, A. Decottignies, C. Len, A. Fihri, ChemSusChem 2010, 3, 502.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. H. Fendler, E. J. Fendler, Catalysis in Micellar and Macromolecular Systems 1975 (Academic Press: New York, NY).

[6]  M. Malmsten, Surfactants and Polymers in Drug Delivery 2002 (Marcel Dekker: New York, NY).

[7]  Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles, and Lyotropic Phases (Ed. R. Zana) 2005 (Taylor & Francis: Boca Raton, FL).

[8]  (a) For some examples on surfactants for metal-catalyzed cross-couplings see: B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, J. Org. Chem. 2011, 76, 4379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVSksrY%3D&md5=accd96a4685229c33cff1dee3c0ff6b3CAS |
      (b) B. H. Lipshutz, S. Ghorai, Aldrichim Acta 2008, 41, 59.

[9]     (a) Microemulsions: Background, New Concepts, Applications, Perspectives (Ed. C. Stubenrauch) 2009 (John Wiley & Sons, Ltd: Chichester).
         (b) M. Bourrel, R. S. Schechter, Microemulsions and Related Systems: Formulation, Solvency and Physical Properties 1988 (Marcel Dekker: New York, NY).

[10]  P. Eychenne, E. Perez, I. Rico, M. Bom, A. Lattes, A. Moisand, Colloid Polym. Sci. 1993, 271, 1049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXnslOhuw%3D%3D&md5=763cb90a791e4dc781de4a260e5fd0faCAS |

[11]  M. Gautier, L. Rico, A. Lattes, J. Org. Chem. 1990, 55, 1500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslOltb0%3D&md5=1b227672b483e43f82cd16edab9b3a5fCAS |

[12]  B. A. Burnside, L. L. Szafraniec, B. L. Knier, H. D. Durst, R. A. Mackay, F. R. Longo, J. Org. Chem. 1988, 53, 2009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVKrtb8%3D&md5=07af9496caac0d22d2b1e1b889e345c1CAS |

[13]  (a) N. Alandis, I. Rico, A. Lattes, Bull. Soc. Chim. Fr. 1989, 2, 252.
      (b) P. Blach, Z. Böstrom, S. Franceschi-Messant, A. Lattes, E. Perez, I. Rico-Lattes, Tetrahedron 2010, 66, 7124.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. Häger, F. Currie, K. Holmberg, Colloid Surface A 2004, 250, 163.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. Lattes, A. De Savignac, A. Ahmad-Zadeh Samii, Tetrahedron 1987, 43, 1725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvVCgtbo%3D&md5=2c2ef17dde7e0ebbdca541c49c1abf49CAS |

[16]  (a) For selected examples see A. Lattes, I. Rico, Colloid Surface 1989, 35, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXls1Srtrc%3D&md5=8dbdff23b95cf084837671099e280d55CAS |
      (b) Z. Saïdi, C. Boned, J. Peyrelasse, Prog. Colloid Polym. Sci. 1992, 89, 156.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Zhang, B. Han, J. Li, Y. Zhao, G. Yang, Angew. Chem. Int. Ed. 2011, 50, 9911.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersL%2FL&md5=6c9f67e964c97dd023ac70ace1fd9b84CAS |

[18]  M. Kahlweit, R. Strey, G. Busse, J. Phys. Chem. 1990, 94, 3881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1ersL0%3D&md5=5a783db08e5a13a897b3a6cba8c35fe4CAS |

[19]  C. Manoharan, A. Basarkar, J. Singh, in Pharmaceutical Suspensions: From Formulation Development to Manufacturing (Eds A. K. Kulshreshtha, O. N. Singh, G. M. Wall) 2010, pp. 1–37 (Springer: New York, NY).

[20]  R. Nagarajan, E. Ruckenstein, Langmuir 2000, 16, 6400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslehs7o%3D&md5=ea361922c7d77a9002c7219f8052607cCAS |

[21]  (a) P. A. Winsor, Trans. Faraday Soc. 1948, 44, 376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXhvF2r&md5=a95d77c7e481fe672475802e6b598968CAS |
      (b) B. P. Binks, W.-G. Cho, P. D. I. Fletcher, D. N. Tetsev, Langmuir 2000, 16, 1025.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. V. Cheprakov, N. V. Ponomareva, I. P. Beletskaya, J. Organomet. Chem. 1995, 486, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1Ghtro%3D&md5=512890ef70b20cc79fb3862bb03ee4b8CAS |

[23]  S. Shinoda, S. Friberg, Emulsions and Solubilization 1986 (Wiley: New York, NY).

[24]  E. Paetzold, G. Oehme, J. Mol. Catal. A – Chem. 2000, 152, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVOktb4%3D&md5=8ebd25c471f7e1d10fbfc5c8ab2b184aCAS |

[25]  S. Mukhopadhyay, A. Yaghmur, M. Baidossi, B. Kundu, Y. Sasson, Org. Process Res. Dev. 2003, 7, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVCmsL4%3D&md5=d135e8e09fb536fc367adfdba47c9e37CAS |

[26]  S. Mukhopadhyay, G. Rothenberg, N. Qafisheh, Y. Sasson, Tetrahedron Lett. 2001, 42, 6117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFaqs7w%3D&md5=5bca1c0d0bfd11ef7403a5667c0072c0CAS |

[27]  M. Lautens, J. Mancuso, H. Grover, Synthesis 2004, 2006.
         | 1:CAS:528:DC%2BD2cXntlCmsb8%3D&md5=0c45108caadbd559a28fcdaea945f0ecCAS |

[28]  (a) G. Zou, Z. Wang, J. Zhu, J. Tang, Chem. Commun. 2003, 2438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlWhsro%3D&md5=8a0a77c7296e12e2e3a8ddd3f1777607CAS |
      (b) A. Mori, Y. Danda, T. Fujii, K. Hirabayashi, K. Osakada, J. Am. Chem. Soc. 2001, 123, 10774.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. Hird, G. W. Gray, K. Toyne, Mol. Cryst. Liq. Cryst. 1991, 206, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVChtLg%3D&md5=7f83866939ae6dcf2f73fedc33727accCAS |

[30]  V. Vashchenko, A. Krivoshey, I. Knyazeva, A. Petrenko, J. W. Goodby, Tetrahedron Lett. 2008, 49, 1445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtb8%3D&md5=789b65f4f1c59cd4487996edcff884edCAS |

[31]  D. Tsvelikhovsky, J. Blum, Eur. J. Org. Chem. 2008, 2017.

[32]  H. Nowothnick, J. Blum, R. Schomäcker, Angew. Chem. Int. Ed. 2011, 50, 1918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVOhs7Y%3D&md5=8bf9cae4c7ed2bce2b841e4c63d3c368CAS |