A Colorimetric Aptamer Biosensor Based on Gold Nanoparticles for the Ultrasensitive and Specific Detection of Tetracycline in Milk
Lan He A D , Yanfang Luo B , Wenting Zhi C , Yuangen Wu A C and Pei Zhou B EA School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
B School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
C Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai 200240, China.
D Bor S. Luh Food Safety Research Center, Shanghai 200240, China.
E Corresponding author. Email: zhoupei@sjtu.edu.cn
Australian Journal of Chemistry 66(4) 485-490 https://doi.org/10.1071/CH12446
Submitted: 27 September 2012 Accepted: 5 December 2012 Published: 13 March 2013
Abstract
This paper proposes a sensing strategy which employs an aptamer, unmodified gold nanoparticles (AuNP), and hexadecyltrimethylammonium bromide (CTAB) to detect tetracycline (TET) in raw milk. The method is based on the colorimetric assay of aggregating AuNP. In the absence of TET, the CTAB and aptamer form a complex which allows the aggregation of AuNP. In the presence of TET, the TET aptamer is exhausted first due to the formation of aptamer-TET complexes, which prevents assembly of the CTAB–aptamer supramolecule, causing a colour change and no aggregation of AuNP. This mechanism for the detection of TET proved to be sensitive and convenient. The colorimetric assay has a detection limit of 122 nM TET. This sensor has great potential for the sensitive, colorimetric detection of a wide range of molecular analytes.
References
[1] M. Listgarten, J. Lindhe, L. Hellden, J. Clin. Periodontol. 1978, 5, 246.| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FmvVSnsw%3D%3D&md5=5977cdb12ee098e99d5f67b09299ec0cCAS |
[2] S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, Anal. Chem. 2009, 81, 7743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgtL7L&md5=9335c2b0d35451bf431618c8e1abd445CAS |
[3] X. Hu, J. Pan, Y. Hu, Y. Huo, G. Li, J. Chromatogr. A 2008, 1188, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVKktbY%3D&md5=9d83b1def37a1b89e7023f2cfdc31dd9CAS |
[4] V. Samanidou, S. Nisyriou, J. Sep. Sci. 2008, 31, 2068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1equ7Y%3D&md5=810660cab2bcd3b765f36de562fbb83dCAS |
[5] D. J. Margolis, M. Fanelli, O. Hoffstad, J. D. Lewis, Am. J. Gastroenterol. 2010, 105, 2610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajs7%2FM&md5=86d81faa43e82140a45834732c4825f3CAS |
[6] M. S. Hossain, M. A. Salam, G. Rabbani, I. Kabir, R. Biswas, D. Mahalanabis, J. Health Popul. Nutr. 2011, 20, 18.
[7] Commission of the European Communities, Establishment by the European Community of Maximum Residue Limits (MRLs) for Residues of Veterinary Medical Products in Foodstuffs of Animal Origin, the Rules Governing Medical Products in the European Community, ECSC-EEC-EAEC, Brussels, 1991.
[8] The Code of Federal Regulations, Title 21, Part 556, Section 152, 500, and 720. US Government Printing Office, Washington, DC, 2003.
[9] J. Li, L. Chen, X. Wang, H. Jin, L. Ding, K. Zhang, H. Zhang, Talanta 2008, 75, 1245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKqsro%3D&md5=e89ded78c882e5958f68dfe000b6cd24CAS |
[10] V. Andreu, P. Vazquez-Roig, C. Blasco, Y. Picó, Anal. Bioanal. Chem. 2009, 394, 1329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslymsLk%3D&md5=7eb41e909d055ef034bc3b33090b4278CAS |
[11] N. Rodríguez, B. D. Real, M. Cruz Ortiz, L. A. Sarabia, A. Herrero, Anal. Chim. Acta 2009, 632, 42.
| Crossref | GoogleScholarGoogle Scholar |
[12] N. E. Virolainen, M. G. Pikkemaat, J. W. A. Elferink, M. T. Karp, J. Agric. Food Chem. 2008, 56, 11065.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGku7fO&md5=3ec6059c6ffb3121e2b5b4f1d09f18c0CAS |
[13] A. Angelikaki, S. Girousi, Chem. Anal. (Pol.) 2008, 53, 445.
| 1:CAS:528:DC%2BD1cXos1eqs7s%3D&md5=043e9fd34e373c3bba2d7ca7c8475ae3CAS |
[14] M. Jeon, J. Kim, K. J. Paeng, S. W. Park, I. R. Paeng, Microchem. J. 2008, 88, 26.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCjsbjK&md5=a4872b0729287d82ce3ad235b8824c11CAS |
[15] K. Sefah, J. A. Phillips, X. Xiong, L. Meng, D. Van Simaeys, H. Chen, J. Martin, W. Tan, Analyst 2009, 134, 1765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSms73I&md5=e2ae865fba678944f505a4157e33202dCAS |
[16] J. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFemurw%3D&md5=df0d13daf7cf46162717a1d01b6153fbCAS |
[17] C. Tuerk, L. Gold, Science 1990, 249, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1OltLY%3D&md5=fed0770a8963da6ec371d58ac0bd427cCAS |
[18] A. D. Ellington, J. W. Szostak, Nature 1990, 346, 818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGgsw%3D%3D&md5=2354f91c1cf9c11da62f6b30e220726dCAS |
[19] D. L. Robertson, G. F. Joyce, Nature 1990, 344, 467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlWltLk%3D&md5=f20b6e2f28b77cf5a7e7cdcfa7d7a111CAS |
[20] A. D. Keefe, S. Pai, A. Ellington, Nat. Rev. Drug Discov. 2010, 9, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFelsLY%3D&md5=1fee92e8777636a3fcd04b3bbbeceb86CAS |
[21] L. Gold, N. Janjic, T. Jarvis, D. Schneider, J. J. Walker, S. K. Wilcox, D. Zichi, Cold Spring Harb. Perspect. Biol. 2012, 4, 1.
[22] M. Mascini, I. Palchetti, S. Tombelli, Angew. Chem. Int. Ed. 2012, 51, 1316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVarsA%3D%3D&md5=553ac0f94e09c526cfd3f045b20b1458CAS |
[23] J. H. Niazi, S. J. Lee, M. B. Gu, Bioorg. Med. Chem. 2008, 16, 7245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps12jtL4%3D&md5=a9ed5faa536f2ec36d26f88e242ad9f0CAS |
[24] T. Mairal, V. Cengiz Özalp, P. Lozano Sánchez, M. Mir, I. Katakis, C. K. O’Sullivan, Anal. Bioanal. Chem. 2008, 390, 989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtLo%3D&md5=4ea35f5efde3fdd7575ba09e69139465CAS |
[25] H. J. Lee, B. C. Kim, M. K. Oh, J. Kim, Chem. Commun. 2012, 48, 5971.
| 1:CAS:528:DC%2BC38Xnt1Khu7k%3D&md5=93e677e421857cac7adde3a1dedee46eCAS |
[26] B. Li, H. Wei, S. Dong, Chem. Commun. 2007, 73.
| Crossref | GoogleScholarGoogle Scholar |
[27] Y. Wu, S. Zhan, F. Wang, L. He, W. Zhi, P. Zhou, Chem. Commun. 2012, 48, 4459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Gkur4%3D&md5=46d8686aa9555eb53e957fa1d16dd0c3CAS |
[28] L. He, W. Zhi, Y. Wu, S. Zhan, F. Wang, H. Xing, P. Zhou, Analytical Methods 2012, 4, 2266.
| 1:CAS:528:DC%2BC38XhtFChurjP&md5=63cec5fed29c44be8d3e9c7e094df872CAS |
[29] J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang, C. Zhang, Analyst 2010, 135, 2706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrsb%2FK&md5=55104db03457ae10fea543f3da179201CAS |
[30] Y. J. Kim, Y. S. Kim, J. H. Niazi, M. B. Gu, Bioprocess Biosyst. Eng. 2010, 33, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjsLrK&md5=1c31eebe8731e41cc07f08dfcacdf09bCAS |
[31] I. Palchetti, M. Mascini, Analyst 2008, 133, 846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1art7s%3D&md5=68bd63130d24fd58ae0ecdd0a9291479CAS |
[32] L. Li, B. Li, Y. Qi, Y. Jin, Anal. Bioanal. Chem. 2009, 393, 2051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ckt7s%3D&md5=cf5f48069459fb3a1dd9d52cd3064511CAS |
[33] Y. Wang, D. Li, W. Ren, Z. Liu, S. Dong, E. Wang, Chem. Commun. 2008, 2520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSjur0%3D&md5=5680123dce3e8b4549b68e80c98936ceCAS |
[34] F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heeger, Proc. Natl. Acad. Sci. USA 2010, 107, 10837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVKqur8%3D&md5=c83f21303f9fe3886b24fdc1e46154a4CAS |
[35] D. K. Smith, B. A. Korgel, Langmuir 2008, 24, 644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1agsw%3D%3D&md5=2dcd10b12b45e01499bff9adbf7daf0bCAS |
[36] P. Kannan, S. Sampath, S. A. John, J. Phys. Chem. C 2010, 114, 21114.
| 1:CAS:528:DC%2BC3cXhsVGktbzI&md5=cff5113dc287e907b9890e8e2fd4c093CAS |
[37] H. Storchova, R. Hrdlickova, J. Chrtek, M. Tetera, D. Fitze, J. Fehrer, Taxon 2000, 49, 79.
| Crossref | GoogleScholarGoogle Scholar |
[38] M. Singh, M. Ugozzoli, M. Briones, J. Kazzaz, E. Soenawan, D. T. O’Hagan, Pharm. Res. 2003, 20, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslWitw%3D%3D&md5=89303752c18f53718f36e95770bff0e2CAS |
[39] Y. Ofir, B. Samanta, V. M. Rotello, Chem. Soc. Rev. 2008, 37, 1814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOitbrM&md5=c03bb83cb607dee9c7397a776dadfdb6CAS |
[40] D. Santhiya, S. Maiti, J. Phys. Chem. B 2010, 114, 7602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVymur8%3D&md5=5350bcd8549ebcfd3aa2f92b16768195CAS |
[41] A. González-Pérez, R. S. Dias, T. Nylander, B. Lindman, Biomacromolecules 2008, 9, 772.
| Crossref | GoogleScholarGoogle Scholar |
[42] Z. Jiang, X. Liao, A. Deng, A. Liang, J. Li, H. Pan, S. Wang, Y. Huang, Anal. Chem. 2008, 80, 8681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KiurfJ&md5=de6b7008d027712acd4c7822ea757721CAS |
[43] Y. Wu, S. Zhan, L. Xu, W. Shi, T. Xi, X. Zhan, P. Zhou, Chem. Commun. 2011, 47, 6027.
| 1:CAS:528:DC%2BC3MXmtVyjtbk%3D&md5=53fbb3b9d9260032993c0b615dc57e68CAS |
[44] J. Adrian, S. Pasche, G. Voirin, D. G. Pinacho, H. Font, F. Sánchez-Baeza, M. Marco, J.M. Diserens, B. Granier, TrAC Trends in Analytical Chem. 2009, 28, 769.
| 1:CAS:528:DC%2BD1MXmvFSisLo%3D&md5=ac24909ea261a4d30b501b520ff60b82CAS |