Axially Aligned Confinement of 1,4-Bis(triethylammoniomethyl)benzene by Two p-Sulfonatocalix[4]arenes
Irene Ling A D , Yatimah Alias A , Munirah Sufiyah Abdul Rahim A , Brian W. Skelton B , Lindsay T. Byrne B and Colin L. Raston CA Chemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
B Centre for Microscopy, Characterisation and Analysis, M313, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
C Centre for Strategic Nano-Fabrication, School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
D Corresponding author. Email: ireneling@siswa.um.edu.my
Australian Journal of Chemistry 65(7) 755-762 https://doi.org/10.1071/CH11449
Submitted: 25 November 2011 Accepted: 18 January 2012 Published: 28 February 2012
Abstract
A multiple component bi-layer complex containing 1,4-bis(triethylammoniomethyl)benzene and mono-phosphonium cations, and p-sulfonatocalix[4]arene involves preferential binding of the ammonium cation in the cavities of two geometrically opposed calixarenes with the mono-phosphonium cation embedded within a bilayer of calixarenes. The complex has channels between bilayers ~14 Å in diameter which are lined with both polar sulfonate groups and the hydrophobic surface of the central part of the ammonium cation. 1H NMR and 1D-ROESY experiments establish the formation of supermolecules of the bis-triethylammonium cation and two calixarenes in solution.
References
[1] M. M. Conn, J. Rebek, , Chem. Rev. 1997, 97, 1647.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksV2rtb8%3D&md5=19efb477dda5e5f0b77d7a9b6f50481bCAS |
[2] (a) K. D. Shimizu, J. Rebek, , P. Natl. Acad. Sci. USA 1995, 92, 12403.
| 1:CAS:528:DyaK28Xhtl2lug%3D%3D&md5=cc3c41904ae98cc32981a5808ecb1079CAS |
(b) B. C. Hamann, K. D. Shimizu, J. Rebek, , Angew. Chem. Int. Ed. 1996, 35, 1326.
(c) R. K. Castellano, D. M. Rudkevich, J. Rebek, Jr, J. Am. Chem. Soc. 1996, 41, 10002.
[3] (a) V. A. Azov, A. Schlegel, F. N. Diederich, Angew. Chem. Int. Ed. 2005, 44, 4635.
| 1:CAS:528:DC%2BD2MXntVSgtL0%3D&md5=7b6c49a51695e21c0b33b57c7d26f90fCAS |
(b) Y. Rondelez, M.-N. Rager, A. Duprat, O. Reinaud, J. Am. Chem. Soc. 2002, 124, 1334.
(c) S. Blanchard, L. Le Clainche, M.-N. Rager, B. Chansou, J.-P. Tuchagues, A. F. Duprat, Y. Le Mest, O. Reinaud, Angew. Chem. Int. Ed. 1998, 37, 2732.
[4] D. J. Cram, S. Karbach, Y. H. Kim, L. Baczynskyj, G. W. Kalleymeyn, J. Am. Chem. Soc. 1985, 107, 2575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvVGjtLg%3D&md5=2c07fe229f427d70f0be5900a8a76c6dCAS |
[5] (a) J. Gabard, A. Collet, Chem. Commun. 1981, 1137.
| 1:CAS:528:DyaL38Xhs1altb8%3D&md5=55bc06f5ea9807599011a0f09b78036aCAS |
(b) R. G. Chapman, J. C. Sherman, J. Am. Chem. Soc. 1995, 117, 9081.
[6] (a) R. Wyler, J. de Mendoza, J. Rebek, , Angew. Chem. Int. Ed. 1993, 32, 1699.
(b) R. S. Meissner, J. Rebek, , R. S. Meissner, J. Rebek, , Science 1995, 270, 1485.
(c) J. Rebek, , Chem. Commun. 2000, 637.
(d) A. Shivanyuk, J. Rebek, , Chem. Commun. 2001, 2374.
[7] (a) B. Olenyuk, J. A. Whiteford, A. Fechtenkotter, P. J. Stang, Nature 1999, 398, 796.
| 1:CAS:528:DyaK1MXjtVSrsrY%3D&md5=ad000d6310526eb8c8b1dc181c427fafCAS |
(b) M. Fujita, K. Umemoto, M. Yoshimura, N. Fujita, T. Kusukawa, K. Biradha, Chem. Commun. 2001, 509.
[8] (a) S. J. Dalgarno, J. L. Atwood, C. L. Raston, Chem. Commun. 2006, 4567.
| 1:CAS:528:DC%2BD28XhtFKitLzL&md5=12a2540f6f7f478f90dd53afcc03065cCAS |
(b) A. D. Martin, R. A. Boulos, L. J. Hubble, K. J. Hartlieb, C. L. Raston, Chem. Commun. 2011, 47, 7353.
[9] J. L. Atwood, L. J. Barbour, M. J. Hardie, C. L. Raston, Coord. Chem. Rev. 2001, 222, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1arurg%3D&md5=763e329a90989d407d6ac7ef7047804fCAS |
[10] (a) A. Drljaca, M. J. Hardie, J. A. Johnson, C. L. Raston, H. R. Webb, Chem. Commun. 1999, 1135.
| 1:CAS:528:DyaK1MXjsFWgurY%3D&md5=819fe7e7de25988e3e740a634bbc3f1dCAS |
(b) S. J. Dalgarno, C. L. Raston, Chem. Commun. 2002, 2216.
(c) P. J. Nichols, M. Makha, C. L. Raston, Cryst. Growth Des. 2006, 6, 1161.
(d) Y. Liu, D. Guo, H. Zhang, F. Ding, K. Chen, H. Song, Chem. – Eur. J. 2007, 13, 466.
[11] (a) A. Drljaca, M. J. Hardie, C. L. Raston, L. Spiccia, Chem. – Eur. J. 1999, 5, 2295.
| 1:CAS:528:DyaK1MXltFGmtro%3D&md5=579c9b7aee78227cbc82b37bd234ee2aCAS |
(b) A. Drljaca, M. J. Hardie, C. L. Raston, J. Chem. Soc. Dalton Trans. 1999, 3639.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) S. J. Dalgarno, J. E. Warren, J. L. Atwood, C. L. Raston, New J. Chem. 2008, 32, 2100.
| 1:CAS:528:DC%2BD1cXhsVCgt77N&md5=22322e4940470ba7dfb5d94762897c05CAS |
(b) S. J. Dalgarno, M. J. Hardie, C. L. Raston, Chem. Commun. 2004, 2802.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. D. Martin, A. N. Sobolev, M. A. Spackman, C. L. Raston, Cryst. Growth Des. 2009, 9, 3759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1ClsbY%3D&md5=f7b8453abd0d62db99160ce51d5f0490CAS |
[14] (a) I. Ling, Y. Alias, C. L. Raston, New J. Chem. 2010, 34, 1802.
| 1:CAS:528:DC%2BC3cXhtVKrsbzM&md5=8d062a7f777db283bad8f78d552a30ebCAS |
(b) I. Ling, Y. Alias, A. N. Sobolev, C. L. Raston, Cryst. Growth Des. 2009, 9, 4497.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) I. Ling, Y. Alias, A. N. Sobolev, C. L. Raston, CrystEngComm 2010, 12, 573.
| 1:CAS:528:DC%2BC3cXhslGjurw%3D&md5=c254fcf58f33739ea3f27bced281dcdeCAS |
(b) I. Ling, Y. Alias, B. W. Skelton, C. L. Raston, Aust. J. Chem. 2010, 63, 1492.
(c) I. Ling, Y. Alias, A. N. Sobolev, C. L. Raston, CrystEngComm 2010, 12, 1869.
| Crossref | GoogleScholarGoogle Scholar |
[16] I. Ling, Y. Alias, A. N. Sobolev, L. T. Byrne, C. L. Raston, CrystEngComm 2011, 13, 787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVCitbg%3D&md5=1c39199044eb19beb2db44186c961633CAS |
[17] (a) M. Scudder, I. Dance, J. Chem. Soc. Dalton 1998, 3155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvF2isL0%3D&md5=bec09088afc6268c652b352e811f87d4CAS |
(b) M. Scudder, I. Dance, J. Chem. Soc. Dalton Trans. 1998, 3167.
(c) I. Dance, M. Scudder, Chem. – Eur. J. 1996, 2, 481.
(d) I. Dance, M. Scudder, J. Chem. Soc. Dalton Trans. 1996, 3755.
[18] (a) J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Acta Crystallogr. 2004, B60, 627.
| 1:CAS:528:DC%2BD2cXpsVKlsb0%3D&md5=6a7163c08c594dc6a55423f421a71c1aCAS |
(b) D. Jayatilaka, J. J. McKinnon, M. A. Spackman, Chem. Commun. 2007, 3814.
(c) D. Jayatilaka, M. A. Spackman, CrystEngComm 2009, 11, 19.
[19] M. Makha, C. L. Raston, Tetrahedron Lett. 2001, 42, 6215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFaqsbk%3D&md5=ff6d7512a40f2c3c13fd8057207a7618CAS |
[20] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=9b979ddbd87a78d6c18caa3d7e8cf709CAS |
[21] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=1f80ec285a5e9701cccf4ab79694aea5CAS |