Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Reactions of 7,7,8,8-Tetracyanoquinodimethane (TCNQ) with Alkynyl-Iron- and -Ruthenium Complexes: Synthesis of Ru{C=CC(CN)=C6H4=C(CN)2}(PPh3)2Cp, a New Donor–Acceptor Molecular Array*

Michael I. Bruce A D , Alexandre Burgun A B , Guillaume Grelaud A , Claude Lapinte B , Brian W. Skelton C and Natasha N. Zaitseva A
+ Author Affiliations
- Author Affiliations

A School of Chemistry & Physics, University of Adelaide, SA 5005, Australia.

B UMR CNRS 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.

C Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, WA 6009, Australia.

D Corresponding author. Email: michael.bruce@adelaide.edu.au

Australian Journal of Chemistry 65(7) 763-772 https://doi.org/10.1071/CH11493
Submitted: 20 December 2011  Accepted: 23 January 2012   Published: 6 March 2012

Abstract

Reactions of 7,7,8,8-tetracyanoquinodimethane (TCNQ) with the alkynyl-iron and ruthenium complexes [M](C≡CR) {[M] = Fe(dppe)Cp*, Ru(PPh3)2Cp; R = H, Ph} are described. The iron complex Fe(C≡CPh)(dppe)Cp* (2a) is oxidized by TCNQ to give the kinetically stable salt [2a•+][TCNQ]•– . Displacement of [TCNQ]•– is achieved by ionic metathesis upon addition of KPF6 to produce [2a•+]PF6. In contrast, Fe(C≡CH)(dppe)Cp* (2b) reacted with TCNQ to give a mixture of compounds containing Fe(=C=CH2)(dppe)Cp* (3a), {Fe(dppe)Cp*}2(μ-C=CHCH=C) (3b), and the zwitterionic complex Fe+{=C=CHC(CN)2C6H4C(CN)2}(dppe)Cp* (3c). In contrast, the reaction of TCNQ with Ru(C≡CR)(PPh3)2Cp (4a, R = Ph; 4b, R = H) gave selectively the zwitterionic vinylidenes Ru+{=C=CRC(CN)2C6H4C(CN)2}(PPh3)2Cp (5a, R = Ph; 5b, R = H), in which the Ru centres are positively charged and the counter-anion is located on the further C(CN)2 group. On heating 5b, elimination of HCN affords Ru{C≡CC(CN)=C6H4=C(CN)2}(PPh3)2Cp (1), while similar treatment of 5a gives Ru{η3-C(CN)2CPh=C6H4=C(CN)2}(PPh3)Cp (6) with loss of PPh3. X-ray structures of 1, 5a, and 6, cyclic voltammetry, and UV-vis spectroscopy of 1 provided evidence for the electronic structures of the new complexes.


References

[1]     (a) (a) D. Astruc, Electron Transfer and Radical Processes in Transition-Metal Chemistry 1995 (VCH: New York, NY).
      (b) B. S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 2002, 31, 168.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. M. D’Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424.
      (d) P. Aguirre-Etcheverry, D. O’Hare, Chem. Rev. 2010, 110, 4839.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. J. Low, N. J. Brown, J. Cluster Sci. 2010, 21, 235.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) R. J. Crutchley, Adv. Inorg. Chem. 1994, 41, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslSit7g%3D&md5=c48c461d6100cc92ca9c71c59ba603bdCAS |
      (b) M. D. Ward, Chem. Soc. Rev. 1995, 24, 121.
      (c) M. D. Ward, Chem. Ind. 1996, 568.
         (d) (d) F. Paul, C. Lapinte, Magnetic Communication in Binuclear Organometallic Complexes Mediated by Carbon-Rich Bridges, in Unusual Structures and Physical Properties in Organometallic Chemistry 2002, pp. 220–291 (Eds M. Gielen, R. Willem, B. Wrackmeyer) (Wiley: London).
      (e) K. D. Demadis, C. M. Hartshorn, T. J. Meyer, Chem. Rev. 2001, 101, 2655.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) B. S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 2002, 31, 168.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) T. Ren, Chem. Rev. 2008, 108, 4185.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) T. Ren, Organometallics 2005, 24, 4854.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) P. F. H. Schwab, M. D. Levin, J. Michl, Chem. Rev. 2005, 105, 1197.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) H. Qi, B. Noll, G. L. Snider, Y. Lu, S. S. Lent, T. P. Fehlner, J. Am. Chem. Soc. 2005, 127, 15218.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) A. S. Blum, T. Ren, D. A. Parish, S. A. Trammell, M. H. Moore, J. G. Kushmerick, G. L. Xu, J. R. Deschamps, S. K. Polack, R. Shashidar, J. Am. Chem. Soc. 2005, 127, 10010.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) G. L. Xu, R. J. Crutchley, M. C. DeRosa, Q.-J. Pan, H.-X. Zhang, X. Wang, T. Ren, J. Am. Chem. Soc. 2005, 127, 13354.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) F. Paul, C. Lapinte, Coord. Chem. Rev. 1998, 178–180, 427.
      (b) M. Akita, T. Koike, Dalton Trans. 2008, 3523.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) V. W.-W. Yam, Acc. Chem. Res. 2002, 35, 555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVajtbs%3D&md5=cb3ca1ef756aaf8a8636a7be919cd536CAS |
      (b) S. Szafert, J. A. Gladysz, Chem. Rev. 2006, 106, PR1.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W.-Y. Wong, C.-L. Ho, Acc. Chem. Res. 2010, 43, 1246.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. J. Higgins, R. J. Nichols, S. Martin, P. Cea, H. S. J. van der Zant, M. M. Richter, P. J. Low, Organometallics 2011, 30, 7.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G.-J. Zhou, W.-Y. Wong, Chem. Soc. Rev. 2011, 40, 2541.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) K. Costuas, S. Rigaut, Dalton Trans. 2011, 40, 5643.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Y. Tanaka, T. Ishisaka, A. Inagaki, T. Koike, C. Lapinte, M. Akita, Chem. Eur. J. 2010, 16, 4699.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  N. Le Narvor, L. Toupet, C. Lapinte, J. Am. Chem. Soc. 1995, 117, 7129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsVWhs7c%3D&md5=09197c8ca28bf736620feb4e5b5c5a1aCAS |

[6]  (a) P. Hamon, F. Justaud, O. Cador, P. Hapiot, S. Rigaut, L. Toupet, L. Ouahab, H. Stueger, J.-R. Hamon, C. Lapinte, J. Am. Chem. Soc. 2008, 130, 17372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWisb3F&md5=f4f41d7b649cafd1b8b9acc3afd432f8CAS |
      (b) S. Kheradmandan, K. Heinze, H. W. Schmalle, H. Berke, Angew. Chem. Int. Ed. 1999, 38, 2270.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Sun, S. E. Shaner, M. K. Jones, D. C. O’Hanlon, J. S. Mugridge, M. D. Hopkins, Inorg. Chem. 2010, 49, 1687.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. N. Semenov, O. Blacque, T. Fox, K. Venkatesan, H. Berke, J. Am. Chem. Soc. 2010, 132, 3115.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J. A. Gladysz, J. Am. Chem. Soc. 2000, 122, 810.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) V. W.-W. Yam, V. C.-Y. Lau, K.-K. Cheung, Organometallics 1996, 15, 1740.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. I. Bruce, P. J. Low, K. Costuas, J.-F. Halet, S. P. Best, G. A. Heath, J. Am. Chem. Soc. 2000, 122, 1949.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. I. Bruce, K. Costuas, T. Davin, B. E. Ellis, J.-F. Halet, C. Lapinte, P. J. Low, K. M. Smith, B. W. Skelton, L. Toupet, A. H. White, Organometallics 2005, 24, 3864.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) C. Olivier, K. Costuas, S. Choua, V. Maurel, P. Turek, J.-Y. Saillard, D. Touchard, S. Rigaut, J. Am. Chem. Soc. 2010, 132, 5638.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Lohan, F. Justaud, T. Roisnel, P. Ecorchard, H. Lang, C. Lapinte, Organometallics 2010, 29, 4804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFCmtr4%3D&md5=7e8bea876234fe69e162e4f33ef7526cCAS |

[8]  (a) A. Miyazaki, Y. Ogyu, F. Justaud, L. Ouahab, T. Cauchy, J.-F. Halet, C. Lapinte, Organometallics 2010, 29, 4628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyqsbnE&md5=b7bc076ccdf01beec49842ba4c037a83CAS |
      (b) M. Iyoda, T. Takahiro, N. Otani, K. Ugawa, M. Yoshida, H. Matsuyama, Y. Kuwatani, Chem. Lett. 2001, 30, 1310.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Vacher, F. Barrière, T. Roisnel, D. Lorcy, Chem. Commun. 2009, 7200.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) M. I. Bruce, P. A. Humphrey, M. R. Snow, E. R. T. Tiekink, J. Organomet. Chem. 1986, 303, 417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmslCmtA%3D%3D&md5=f6f8790d29f27829c9365e7339961d8fCAS |
      (b) A. Davison, J. P. Solar, J. Organomet. Chem. 1978, 155, C8.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. I. Bruce, Aust. J. Chem. 2011, 64, 77.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. I. Bruce, T. W. Hambley, M. R. Snow, A. G. Swincer, Organometallics 1985, 4, 494.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  F. de Montigny, G. Argouarch, T. Roisnel, L. Toupet, C. Lapinte, S. C.-F. Lam, C.-H. Tao, V. W.-W. Yam, Organometallics 2008, 27, 1912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlCku70%3D&md5=eb01c88d96f239be3c62c24829e84fffCAS |

[11]  S.-I. Kato, F. Diederich, Chem. Commun. 2010, 46, 1994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSntr8%3D&md5=410da9ac33abc714cde73047deab7a99CAS |

[12]  M. Masai, K. Sonogashira, N. Hagihara, J. Organomet. Chem. 1972, 34, 397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1Oitrs%3D&md5=206665c621d88fe0f1cf133c57f8f767CAS |

[13]  K. Onuma, Y. Kai, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn. 1975, 48, 1696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXks12mt7g%3D&md5=ebd65eb81fddfcb36e69db31b08eb616CAS |

[14]  P. Butler, A. R. Manning, C. J. McAdam, J. Simpson, J. Organomet. Chem. 2008, 693, 381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Ckuw%3D%3D&md5=c18a7b4ef400efc9be2e5497f7b4fec8CAS |

[15]  M. I. Bruce, M. L. Cole, C. R. Parker, B. W. Skelton, A. H. White, Organometallics 2008, 27, 3352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1CltLY%3D&md5=34570fdd6b8aca5a7019fe26b789ff01CAS |

[16]  (a) C. E. Klots, R. N. Compton, V. F. Raaen, J. Chem. Phys. 1974, 60, 1177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXht1GrsLY%3D&md5=3761a26d82371ba0e1cf39311b096732CAS |
      (b) R. N. Compton, C. D. Cooper, J. Chem. Phys. 1977, 66, 4325.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) C. Roger, P. Hamon, L. Toupet, H. Rabaâ, J.-Y. Saillard, J.-R. Hamon, C. Lapinte, Organometallics 1991, 10, 1045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Cntrg%3D&md5=7557a4ace991997a2524abd7c305cad9CAS |
      (b) F. de Montigny, G. Argouarch, K. Costuas, J.-F. Halet, T. Roisnel, L. Toupet, C. Lapinte, Organometallics 2005, 24, 4558.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. I. Ghazala, F. Paul, L. Toupet, T. Roisnel, P. Hapiot, C. Lapinte, J. Am. Chem. Soc. 2006, 128, 2463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFWhtQ%3D%3D&md5=f567bba8ff35e8ba29c8d1fa0265ac51CAS |

[19]  F. Paul, L. Toupet, J.-Y. Thépot, K. Costuas, J.-F. Halet, C. Lapinte, Organometallics 2005, 24, 5464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSltr7F&md5=3f09f54ef0ed41068db45fae306d8d78CAS |

[20]  M. I. Bruce, M. A. Fox, P. J. Low, B. W. Skelton, A. H. White, N. N. Zaitseva, Dalton Trans. 2010, 39, 3759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKgt7o%3D&md5=660ee4ee227410af9988cd030966eeb8CAS |

[21]  (a) M. I. Bruce, A. Burgun, K. A. Kramarczuk, B. K. Nicholson, C. R. Parker, B. W. Skelton, A. H. White, N. N. Zaitseva, Dalton Trans. 2009, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyku7jK&md5=53b31da6d897d86a6673c3e51516f228CAS |
      (b) M. I. Bruce, M. A. Fox, P. J. Low, B. K. Nicholson, C. R. Parker, W. C. Patalinghug, B. W. Skelton, A. H. White, Organometallics 2011,
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) J. S. Miller, J. H. Zhang, W. M. Reiff, D. A. Dixon, L. D. Preston, A. H. Reis, E. Gebert, M. Extine, J. Troup, A. Epstein, M. D. Ward, J. Am. Chem. Soc. 1987, 91, 4344.
         | 1:CAS:528:DyaL2sXkvFKrtrc%3D&md5=15d3e3071caf5b125675806f335e175fCAS |
      (b) A. Hoekstra, T. Spoelder, A. Vos, Acta Crystallogr. 1972, B28, 14.

[23]  M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, A. H. White, Organometallics 2003, 22, 3184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFCiu70%3D&md5=1ed8de59050d49c21483f46789c120e3CAS |

[24]  F. Paul, B. E. Ellis, M. I. Bruce, L. Toupet, T. Roisnel, K. Costuas, J.-F. Halet, C. Lapinte, Organometallics 2006, 25, 649.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCgsrnO&md5=0cd5152a8508761ac322ef179f4cfd40CAS |

[25]  I. R. Whittall, M. G. Humphrey, D. C. R. Hockless, B. W. Skelton, A. H. White, Organometallics 1995, 14, 3970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvF2htbs%3D&md5=bbb6ee2aa09da680291479e3bbd6b148CAS |

[26]  L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, W. E. Mochel, J. Am. Chem. Soc. 1962, 84, 3374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXosFKg&md5=8d059775f05cb3de6f69702dae6d32feCAS |

[27]  (a) F. Paul, L. Toupet, J.-Y. Thépot, K. Costuas, J.-F. Halet, C. Lapinte, Organometallics 2005, 24, 5464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSltr7F&md5=3f09f54ef0ed41068db45fae306d8d78CAS |
      (b) F. Paul, B. G. Ellis, M. I. Bruce, L. Toupet, T. Roisnel, K. Costuas, J.-F. Halet, C. Lapinte, Organometallics 2006, 25, 649.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  W. Henderson, J. S. McIndoe, B. K. Nicholson, P. J. Dyson, J. Chem. Soc., Dalton Trans. 1998, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVSjtbg%3D&md5=ea716365be47410556739532fc3990d2CAS |

[29]  C. Bitcon, M. W. Whiteley, J. Organomet. Chem. 1987, 336, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtVartr4%3D&md5=12b370af6e262bdf82a10157f8faa37dCAS |

[30]  N. G. Connelly, M. P. Gamasa, J. Gimeno, C. Lapinte, E. Lastra, J. P. Maher, N. Le Narvor, A. L. Rieger, P. H. Rieger, J. Chem. Soc., Dalton Trans. 1993, 2575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVOhtLw%3D&md5=ed8ee2450f6d7909cf0b3f7819c07a6bCAS |

[31]  M. I. Bruce, C. Hameister, A. G. Swincer, R. C. Wallis, Inorg. Synth. 1982, 21, 78.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXnt1ekuw%3D%3D&md5=7c74e0f96c526e9f1d9f36996476f2e2CAS |

[32]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
         | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=9b979ddbd87a78d6c18caa3d7e8cf709CAS |