Two-Dimensional Coordination Polymers in Rubidium and Caesium Complexes with Orthanilic Acid
Graham SmithScience and Engineering Faculty, Queensland University of Technology, Brisbane, Qld 4001, Australia. Email: g.smith@qut.edu.au
Australian Journal of Chemistry 65(7) 750-754 https://doi.org/10.1071/CH11503
Submitted: 23 December 2011 Accepted: 9 January 2012 Published: 29 February 2012
Abstract
The crystal structures of the rubidium and caesium complexes with 2-aminobenzenesulfonic acid (orthanilic acid), [Rb4(C6H6NO3S)4(H2O)]n(1) and [Cs(C6H6NO3S)]n(2), have been determined at 200 K. Complex 1 has a repeating unit comprising four independent and different Rb coordination centres, (RbO8), (RbO7), (RbN2O4) and (RbO10), each having irregular stereochemistry and involving several bidentate chelate sulfonate-O,O′-metal and bridging interactions, giving a two-dimensional polymeric layered structure. Anhydrous complex 2 is also polymeric with the irregular (CsO7) coordination polyhedron comprising six sulfonate oxygen donors from three separate bidentate chelate sulfonate ligands and one monodentate bridging sulfonate oxygen, giving a two-dimensional layered structure.
References
[1] R. E. Dinnebier, S. Jelonek, J. Seiler, P. W. Stephens, Z. Anorg. Allg. Chem. 2002, 628, 363.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslOnt7Y%3D&md5=7619e957db321b0e3138ca91d7b04140CAS |
[2] Y. Miao, X. Zhang, C. Liu, Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m1002.
| Crossref | GoogleScholarGoogle Scholar |
[3] F. Wiesbrock, H. Schmidbaur, Inorg. Chem. 2003, 42, 7283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1GgtrY%3D&md5=e36131c413d31e2d49dfaae848e0a765CAS |
[4] G. Smith, U. D. Wermuth, Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m1047.
| Crossref | GoogleScholarGoogle Scholar |
[5] G. Smith, U. D. Wermuth, Acta Crystallogr. E 2011, 67, m1595.
[6] G. Smith, U. D. Wermuth, J. Chem. Crystallogr. 2011, 41, 688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVSjs7w%3D&md5=a00abb7e39b879dae8d5193d7fb52b9eCAS |
[7] M. Hu, Y. Du, S. Li, Y. Jiang, Z. Liu, C. Geng, Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, m15.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. Smith, U. D. Wermuth, D. J. Young, J. M. White, Polyhedron 2007, 26, 3645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1CltL0%3D&md5=6fae6dd8c25a969646457b5f7cfb108bCAS |
[9] M. Hu, C. Geng, S. Li, Y. Du, Y. Jiang, Z. Liu, Organometal. Chem. 2005, 690, 3118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWitLs%3D&md5=e6c5c86a1829676b5aeef9302754210cCAS |
[10] S. Haussühl, Z. Kristallogr. 1997, 212, 186.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. Schreuer, Z. Kristallogr., New Cryst. Struct. 1999, 214, 293.
| 1:CAS:528:DyaK1MXhslegu7c%3D&md5=9dfd116bfbbe3a594bdbc3a80c862b6eCAS |
[12] J. M. Harrowfield, B. W. Skelton, A. H. White, Aust. J. Chem. 1995, 48, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVylu7s%3D&md5=f67b406cd1775c2a1d19a84c18388d3fCAS |
[13] A. Schouten, J. A. Kanters, N. S. Poonia, Acta Crystallogr. C 1990, 46, 61.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. R. Hall, E. N. Maslen, Acta Crystallogr. 1967, 22, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXlvFOgtg%3D%3D&md5=850508a81f8ee337bd85ca82a99dd18aCAS |
[15] G. Smith, U. D. Wermuth, D. J. Young, P. C. Healy, Acta Crystallogr. Sect. E Struct. Rep. Online 2004, 60, m836.
| Crossref | GoogleScholarGoogle Scholar |
[16] Oxford Diffraction 2010. CrysAlisPro. Agilent Technologies, Yarnton, Oxfordshire, England.
[17] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=a99bb00e596a61480b8be4159291b3beCAS |
[19] A. L. Spek, Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148.
| Crossref | GoogleScholarGoogle Scholar |