Surface State Trapping and Mobility Revealed by Junction Electrochemistry of Nano-Cr2O3
Charles Y. Cummings A , Gary A. Attard B , John M. Mitchels A and Frank Marken A CA Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
B Cardiff University, School of Chemistry, Cardiff Catalysis Institute, Cardiff CF10 3AT, UK.
C Corresponding author. Email: f.marken@bath.ac.uk
Australian Journal of Chemistry 65(1) 65-71 https://doi.org/10.1071/CH11382
Submitted: 2 October 2011 Accepted: 14 November 2011 Published: 15 December 2011
Abstract
Hydrous chromium oxide nanoparticles (~15 nm diameter) are assembled from a colloidal solution onto tin-doped indium oxide (ITO) substrates by layer-by-layer electrostatic deposition with aqueous carboxymethyl-cellulose sodium salt binder. Calcination produces purely inorganic mesoporous films (average thickness increase per layer of 1 nm) of chromia Cr2O3. When immersed in aqueous carbonate buffer at pH 10 and investigated by cyclic voltammetry, a chemically reversible oxidation is observed because of a conductive layer at the chromia surface (formed during initial potential cycling). This is attributed to a surface CrIII/IV process. At more positive potentials higher oxidation states are accessible before film dissolution. The effects of film thickness and pH on voltammetric responses are studied. X-Ray photoelectron spectroscopy (XPS) evidence for higher chromium oxidation states is obtained. ITO junction experiments are employed to reveal surface conduction by CrIII/IV and CrIV/V ‘mobile surface states’ and an estimate is obtained for the apparent CrIII/IV charge surface diffusion coefficient Dapp = 10–13 m2 s–1. The junction experiment distinguishes mobile surface redox sites from energetically distinct deeper-sitting ‘trapped states’.
References
[1] K. Bowden, I. M. Heilbron, E. R. H. Jones, B. C. L. Weedon, J. Chem. Soc. 1946, 39.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH28XhsVKlsw%3D%3D&md5=704a93a3c60fdec526b978dfc0f6731eCAS |
[2] A. K. Das, Coord. Chem. Rev. 2004, 248, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yhtro%3D&md5=fc22027f7a48cda129421895eb4e2a75CAS |
[3] K. P. Kamper, W. Schmitt, G. Guntherodt, R. J. Gambino, R. Ruf, Phys. Rev. Lett. 1987, 59, 2788.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. Schmuki, J. Solid State Electrochem. 2002, 6, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFamuro%3D&md5=d85c54f1cc5694c9e13880c3a5f85517CAS |
[5] M. R. Bayati, M. H. Shariat, K. Janghorban, Renew. Energy 2005, 30, 2163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVCgtbg%3D&md5=b905e72355d5c85ac945ee9a22c3cf63CAS |
[6] H. Sahan, H. Goktepe, S. Patat, A. Ulgen, Solid State Ion. 2010, 181, 1437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SlsbrO&md5=f544129e48b55897c1e35f8675e3a6afCAS |
[7] G. M. An, Y. Zhang, Z. M. Liu, Z. J. Miao, B. X. Han, S. D. Miao, J. P. Li, Nanotechnology 2008, 19, 035504.
| Crossref | GoogleScholarGoogle Scholar |
[8] X. Hou, K. L. Choy, Thin Solid Films 2008, 516, 8620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyltL3I&md5=d9e2af804080bf1ab95e43963388133dCAS |
[9] S. D. Park, J. M. Vohs, R. J. Gorte, Nature 2000, 404, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1ags7g%3D&md5=94ff13715ec3b046e657a146ffaee648CAS |
[10] X. Z. Fu, X. X. Luo, J. L. Luo, K. T. Chuang, A. R. Sanger, A. Krzywicki, J. Power Sources 2011, 196, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGntbbF&md5=c909e4793f29642ed87c53e74767d3f0CAS |
[11] U. Balachandran, R. W. Siegel, Y. X. Liao, T. R. Askew, Nanostruc. Mater. 1995, 5, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlSmtrg%3D&md5=9c9689fb78241aa1c6deca0efb2ecb9aCAS |
[12] T. Grygar, J. Solid State Electrochem. 1998, 2, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFWgtrw%3D&md5=7b7a51ab315b07e3dbc4d4d3dd70540aCAS |
[13] T. Grygar, P. Bezdicka, J. Solid State Electrochem. 1998, 3, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlWnsw%3D%3D&md5=58878ea58bba526d9efa444ba1d6af4eCAS |
[14] A. Domenech, F. J. Torres, E. R. de Sola, J. Alarcon, Eur. J. Inorg. Chem. 2006, 2006, 638.
| Crossref | GoogleScholarGoogle Scholar |
[15] F. Scholz, U. Schröder, R. Gulaboski, Electrochemistry of Immobilized Particles and Droplets 2005 (Springer: Berlin).
[16] T. Grygar, F. Marken, U. Schröder, F. Scholz, Collect. Czech. Chem. Commun. 2002, 67, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFyqs70%3D&md5=44af3d3393acac452e9dc7a11e8c09e9CAS |
[17] M. J. Avena, R. Cabrol, O. R. Camara, C. P. Depauli, J. Appl. Electrochem. 1992, 22, 959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXivFSntA%3D%3D&md5=4e8c6ba86f164b2a9e11e3aa65610b7eCAS |
[18] H. B. Weiser, Inorganic Colloid Chemistry Vol 2: The Hydrous Oxides and Hydroxides 1935 (John Wiley & Sons, Inc.: New York, NY).
[19] D. W. Kim, S. I. Shin, J. D. Lee, S. G. Oh, Mater. Lett. 2004, 58, 1894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVehurs%3D&md5=6b9e14ee8e73f786b6d45718c0fb1231CAS |
[20] N. A. Dhas, Y. Koltypin, A. Gedanken, Chem. Mater. 1997, 9, 3159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVCmtLw%3D&md5=9f81d32491e992d30ad3e02271840d16CAS |
[21] Z. Z. Pei, Y. Zhang, Mater. Lett. 2008, 62, 504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynsL3M&md5=8d882261a94cab9b1672947cb955d6a7CAS |
[22] Z. Z. Pei, H. B. Xu, Y. Zhang, J. Alloy. Comp. 2009, 468, L5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1ynsw%3D%3D&md5=ff5f61719007610706bd3f31db22c301CAS |
[23] T. Tsuzuki, P. G. McCormick, Acta Mater. 2000, 48, 2795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFegsb0%3D&md5=4399cce1c75d58d5304ff04811c4e8f3CAS |
[24] H. J. Gulley-Stahl, W. L. Schmidt, H. A. Bullen, J. Mater. Sci. 2008, 43, 7066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSmtLvL&md5=faf2c4f24f473e0feb7b12cbbc5b66eeCAS |
[25] L. W. Finger, R. M. Hazen, J. Appl. Phys. 1980, 51, 5362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtFekur4%3D&md5=eceef67caa7b615911410d1eaae3526aCAS |
[26] J. O. M. Bockris, U. M. K. Shahed, Surface Electrochemistry 1993 (Plenum Press: London).
[27] C. Y. Cummings, M. J. Bonné, K. J. Edler, M. Helton, A. McKee, F. Marken, Electrochem. Commun. 2008, 10, 1773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12isrvO&md5=e1d4b5e28d3a4a5594c6572ac394b30cCAS |
[28] T. M. Benedetti, F. F. C. Bazito, E. A. Ponzio, R. M. Torresi, Langmuir 2008, 24, 3602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yju7o%3D&md5=b1cff5065ca051acf374cce43463f5caCAS |
[29] C. Y. Cummings, S. J. Stott, M. J. Bonné, K. J. Edler, P. M. King, R. J. Mortimer, F. Marken, J. Solid State Electrochem. 2008, 12, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKls77M&md5=d6a2efe5ac99158e8437b02cf391131cCAS |
[30] G. Decher, J. B. Schlenoff, Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials 2003 (Wiley-VCH: New York, NY).
[31] C. Y. Cummings, J. D. Wadhawan, T. Nakabayashi, M. A. Haga, L. Rassaei, S. E. C. Dale, S. Bending, M. Pumera, S. C. Parker, F. Marken, J. Electroanal. Chem. 2011, 657, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlaqtr8%3D&md5=3ed8ec5f826dc072708603df3d2fa149CAS |
[32] J. T. Li, V. Maurice, J. Swiatowska-Mrowiecka, A. Seyeux, S. Zanna, L. Klein, S. G. Sun, P. Marcus, Electrochim. Acta 2009, 54, 3700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGmsbw%3D&md5=5303dd571bb1d3f52eefc04365984a95CAS |
[33] H. A. Bullen, S. J. Garrett, Chem. Mater. 2002, 14, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFagsQ%3D%3D&md5=09a15111a09dfad876004122ef0c77fdCAS |
[34] S. Budavari, The Merck Index, 12th edn 1996 (Merck & Co Inc: Rahway, NJ).
[35] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions 1974 (NACE International Cebelcor: Brussels).
[36] J. W. Ball, D. K. Nordstrom, J. Chem. Eng. Data 1998, 43, 895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFKmtLk%3D&md5=a2eb4e31c0fff90fb3c45f1bae4e6254CAS |
[37] A. Fattori, L. M. Peter, H. X. Wang, H. Miura, F. Marken, J. Phys. Chem. C 2010, 114, 11822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVaqurk%3D&md5=866eb5be569b7789991662de7be733c2CAS |
[38] P. W. Atkins, J. D. Paula, Physical Chemistry, 8th edn 2006, p. 781 (Oxford University Press: Oxford).
[39] A. Fattori, L. M. Peter, S. R. Belding, R. G. Compton, F. Marken, J. Electroanal. Chem. 2010, 640, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFagtbc%3D&md5=c7cdd9698672279afa9e4b37c260a66aCAS |
[40] D. A. Vander Griend, J. S. Golden, C. A. Arrington, Inorg. Chem. 2002, 41, 7042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSntLw%3D&md5=5262a398e9ef2dcc2f08f760faba9408CAS |
[41] G. Bliznakov, S. Angelov, S. Manev, J. Catal. 1974, 33, 138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXktlSjurw%3D&md5=b2785770b7a73880029295bd686dc2cdCAS |
[42] R. V. Pankevich, V. S. Dutka, Kinet. Catal. 1992, 33, 870.
[43] A. J. Bard, L. R. Faulkner, Electrochemical Methods, 2nd edn 2001, p. 231 (Wiley: New York, NY).
[44] M. E. G. Lyons, Analyst (Lond.) 1994, 119, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1Cjt70%3D&md5=bf5f4a3eabe52a7737331c380684e1c3CAS |
[45] V. Dharuman, K. C. Pillai, J. Solid State Electrochem. 2006, 10, 967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosFWksbs%3D&md5=933ad358b41dd352b40e1bbfdd9c19b5CAS |