Synthesis and X-Ray Crystal Structure of Cynandione B Analogues
Lisa P. T. Hong A B , Jonathan M. White A B and Christopher D. Donner A B CA School of Chemistry, The University of Melbourne, Vic. 3010, Australia.
B Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic. 3010, Australia.
C Corresponding author. Email: cdonner@unimelb.edu.au
Australian Journal of Chemistry 65(1) 58-64 https://doi.org/10.1071/CH11364
Submitted: 12 September 2011 Accepted: 10 November 2011 Published: 12 December 2011
Abstract
The synthesis of analogues of cynandione B, a phenolic acetophenone from Cynanchum taiwanianum, is described. The one-step conversion of benzochromenones to the heptacyclic spiroacetal core of cynandione B using methylmagnesium bromide is investigated and structural requirements for this novel transformation established. X-ray crystal structure analysis has established the relative configuration in these unusual heterocycles.
References
[1] G. W. Burton, K. U. Ingold, Acc. Chem. Res. 1986, 19, 194.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFeqtbk%3D&md5=3442380a25788c5220bbfa619de79e39CAS |
[2] C.-N. Lin, P.-L. Huang, C.-M. Lu, M.-H. Yen, R.-R. Wu, Phytochemistry 1997, 44, 1359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVyjtb0%3D&md5=258cc55d41b52a3fd3a86746592f7333CAS |
[3] M. K. Lee, H. Yeo, J. Kim, G. J. Markelonis, T. H. Oh, Y. C. Kim, J. Neurosci. Res. 2000, 59, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1SksA%3D%3D&md5=43a0bd9c702dee9b53429b8c469f1ec4CAS |
[4] M. K. Lee, H. Yeo, J. Kim, Y. C. Kim, J. Pharm. Pharmacol. 2000, 52, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFKls7w%3D&md5=95fde703a1aefb457b8f8f70c414dfe2CAS |
[5] P.-L. Huang, S.-J. Won, S.-H. Day, C.-N. Lin, Helv. Chim. Acta 1999, 82, 1716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFensbo%3D&md5=f2cba3b593310362d98cf91868f6a0a4CAS |
[6] C.-N. Lin, P.-L. Huang, J.-J. Wang, S.-H. Day, H.-C. Lin, J.-P. Wang, Y.-L. Ko, C.-M. Teng, Biochim. Biophys. Acta 1998, 1380, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFaquro%3D&md5=daeabe35fc6de52e5deafaf79a66d1ffCAS |
[7] Y.-L. Lin, Y.-M. Wu, Y.-H. Kuo, Phytochemistry 1997, 45, 1057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1eksrY%3D&md5=1a637599d4411b59448b412c0adeda30CAS |
[8] L. M. Tewierik, C. D. Donner, J. M. White, M. Gill, Aust. J. Chem. 2007, 60, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqtLY%3D&md5=2946d71f88d46593873820f24cda90f6CAS |
[9] T. Harayama, H. Yasuda, Heterocycles 1997, 46, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFSktrY%3D&md5=0c6b67941932c84ac9df1f14666f6391CAS |
[10] C.-G. Huang, K. A. Beveridge, P. Wan, J. Am. Chem. Soc. 1991, 113, 7676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFyht7g%3D&md5=84fbba2e15002865cd4ca72921f4851cCAS |
[11] B. Appel, N. N. R. Saleh, P. Langer, Chem. – Eur. J. 2006, 12, 1221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wmsrs%3D&md5=819f225214a59654a4b09c7edc404ce1CAS |
[12] J. P. Devlin, Can. J. Chem. 1975, 53, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksFylsr8%3D&md5=5f778c59e4759911a7b46cdfb686b29fCAS |
[13] P. Müller, T. Venakis, C. H. Eugster, Helv. Chim. Acta 1979, 62, 2833.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=00966de1ff8013092fd134774ff94385CAS |
[15] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=014fea354b0cf08dd89b4c674f7abf7dCAS |
[16] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=003e962056c4804a08fb74b36d19850dCAS |