Ring-closing Metathesis in Peptides – the Sting is in the Tail!
Bianca J. van Lierop A , Christoph Bornschein A , W. Roy Jackson A and Andrea J. Robinson A BA School of Chemistry, Monash University (Clayton Campus), Wellington Road, Clayton, Vic. 3800, Australia.
B Corresponding author. Email: Andrea.Robinson@monash.edu
Andrea Robinson graduated with a Ph.D. in 1993 from Monash University after studying natural product synthesis with Roger Brown. She then became a research scientist at the DuPont Merck Pharmaceutical Company in Wilmington, Delaware in the USA. There she worked in large teams focused on cardiovascular, cancer, and process targets. After 3 years of industrial research she returned to Monash University to take up an academic appointment in the School of Chemistry in 1996 where she is currently an Associate Professor. Her research interests are wide ranging, from natural products to polymers, but all centre on the exploitation of homogeneous catalysis. She is the leader of a vibrant research group, member of several international boards for catalysis symposia, married to fellow chemist Paul White, and mother of two active boys, Aaron and Kane. |
Australian Journal of Chemistry 64(6) 806-811 https://doi.org/10.1071/CH11090
Submitted: 25 February 2011 Accepted: 22 March 2011 Published: 27 June 2011
Abstract
Performing ring-closing metathesis on resin-bound peptides provides an expedient route to carbocyclic peptidomimetics of medicinal interest. Some sequences are highly resistant to metathesis and special strategies need to be employed to promote viable ring closure. This paper describes an on-resin, alternating solid-phase peptide synthesis-catalysis method to overcome deleterious aggregation phenomena. It can be used to promote high yielding single-ring closures and regioselective multi-ring construction in peptides.
References
[1] A. Brik, Adv. Synth. Catal. 2008, 350, 1661 and references described therein.S. R. Gracia, K. Gaus, N. Sewald, Future Med. Chem. 2009, 1, 1289 and references described therein.
M. J. P. de Vegam, M. I. García-Aranda, R. González-Muñiz, Med. Res. Rev. 2011, in press and references described therein.
Ø. Jacobsen, J. Klaveness, P. Rongved, Molecules 2010, 15, 6638 and references described therein.
[2] (a) S. J. Miller, R. H. Grubbs, J. Am. Chem. Soc. 1995, 117, 5855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1yqsbY%3D&md5=2369aad69ade6b7fba126bad2ee3fc3aCAS |
(b) H. E. Blackwell, R. H. Grubbs, Angew. Chem. Int. Ed. 1998, 37, 3281.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. K. Henchey, A. L. Jochim, P. S. Arora, Curr. Opin. Chem. Biol. 2008, 12, 692.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. E. Schafmeister, J. Po, G. L. Verdine, J. Am. Chem. Soc. 2000, 122, 5891.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) A. J. Robinson, J. Elaridi, B. J. van Lierop, S. Mujcinovic, W. R. Jackson, J. Pept. Sci. 2007, 13, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Ojtbk%3D&md5=3ace3297d9cd04f3ac035c8ab11bd037CAS | 17394122PubMed |
(b) A. J. Robinson, B. J. van Lierop, R. D. Garland, E. Teoh, J. Elaridi, J. P. Illesinghe, W. R. Jackson, Chem. Commun. 2009, 4293.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. L. Stymiest, B. F. Mitchell, S. Wong, J. C. Vederas, Org. Lett. 2003, 5, 47.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. L. Stymiest, B. F. Mitchell, S. Wong, J. C. Vederas, J. Org. Chem. 2005, 70, 7799.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Carotenuto, D. D’Addona, E. Rivalta, M. Chelli, A. M. Papini, P. Rovero, M. Ginanneschi, Lett. Org. Chem. 2005, 2, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Wht7o%3D&md5=ca0994e1521f8f730f2a285addc4b9c6CAS |
[5] P. Teo, R. H. Grubbs, Organometallics 2010, 29, 6045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlansLrF&md5=4fc6608ef5a81125307a58b40e323d26CAS |
[6] B. J. van Lierop, A. N. Whelan, S. Andrikopoulos, R. Mulder, W. R. Jackson, A. J. Robinson, Int. J. Pept. Res. Ther. 2010, 16, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVerurw%3D&md5=d4818ba4d372f181cd0a689227f5a022CAS |
[7] (a) S. M. Miles, R. J. Leatherbarrow, S. P. Marsden, W. J. Coates, Org. Biomol. Chem. 2004, 2, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFaktg%3D%3D&md5=0b93a9abd439178695ea486fafed12feCAS | 14747852PubMed |
(b) R. N. Chapman, P. S. Arora, Org. Lett. 2006, 8, 5825.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. N. Whelan, J. Elaridi, R. J. Mulder, A. J. Robinson, W. R. Jackson, Can. J. Chem. 2005, 83, 875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Slt7fP&md5=3169a98612280138db0f19313f878f71CAS |
[9] N. Schmiedeberg, H. Kessler, Org. Lett. 2002, 4, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFeltrw%3D&md5=2cd86122c8c52522ba5ab2ad9e91a3bdCAS | 11772090PubMed |
[10] V. R. Pattabiraman, J. L. Stymiest, D. J. Derksen, N. I. Martin, J. C. Vederas, Org. Lett. 2007, 9, 699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVyltw%3D%3D&md5=81a3753d62539332b711baaff1b03797CAS | 17286377PubMed |
[11] D. D’Addona, A. Carotenuto, E. Novellino, V. Piccand, J. C. Reubi, A. Di Cianni, F. Gori, A. M. Papini, M. Ginanneschi, J. Med. Chem. 2008, 51, 512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyjsw%3D%3D&md5=22d2706439fffdf496da6fb7b55d25c9CAS | 18210999PubMed |
[12] (a) N. Ghalit, D. T. S. Rijkers, J. Kemmink, C. Versluis, R. M. J. Liskamp, Chem. Commun. 2005, 192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFGqtA%3D%3D&md5=8df7ea159637ad5cbeff71d4e7ca3eb8CAS |
(b) N. Ghalit, A. J. Poot, A. Furstner, D. T. S. Rijkers, R. M. J. Liskamp, Org. Lett. 2005, 7, 2961.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Robinson, J. Elaridi, J. Patel, W. R. Jackson, Chem. Commun. 2005, 5544.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Elaridi, J. Patel, W. R. Jackson, A. J. Robinson, J. Org. Chem. 2006, 71, 7538.
| Crossref | GoogleScholarGoogle Scholar |