Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Interactions of the Antimicrobial Peptide Maculatin 1.1 and Analogues with Phospholipid Bilayers

David I. Fernandez A , Marc-Antoine Sani A and Frances Separovic A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

B Corresponding author. Email: fs@unimelb.edu.au




Professor Frances Separovic is a Biophysical Chemist who is Head of the School of Chemistry, University of Melbourne, and was Assistant Dean (EO) (2001–02) and Associate Dean (2009–10) of the Faculty of Science. Frances has developed solid-state NMR techniques to determine the structure and dynamics of membrane components in situ, specializing in peptide antibiotics and toxins within phospholipid membranes and was awarded the Robertson Medal by the Australian Society for Biophysics in 2009. As well as serving as General Treasurer of the Royal Australian Chemical Institute (2008–10), she was elected to Council of the Biophysical Society (USA) for 2007–10; Treasurer of Lorne Protein Conference (2006–09), Council of International Union of Pure and Applied Biophysics, IUPAB (2002–05); President of the Australian Society for Biophysics (1999–2001); Director of Australian New Zealand Magnetic Resonance Society (1996–2000, 2010–); and an editorial board member of Concepts in Magnetic Resonance, Biochimica Biophysica Acta – Biomembranes and Accounts in Chemical Research.

Australian Journal of Chemistry 64(6) 798-805 https://doi.org/10.1071/CH11062
Submitted: 4 February 2011  Accepted: 17 March 2011   Published: 27 June 2011

Abstract

The interactions of the antimicrobial peptide, maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) and two analogues, with model phospholipid membranes have been studied using solid-state NMR and circular dichroism spectroscopy. Maculatin 1.1 and the P15G and P15A analogues displayed minimal secondary structure in water, but with zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles displayed a significant increase in α-helical content. In mixed phospholipid vesicles of DMPC and anionic dimyristoylphosphatidylglycerol (DMPG), each peptide was highly structured with ~80% α-helical content. In DMPC vesicles, the native peptide displayed moderate head group interaction and significant perturbation of the lipid acyl chains. In DMPC/DMPG vesicles, maculatin 1.1 promoted formation of a DMPG-enriched phase and moderately increased disorder towards acyl chain ends of DMPC in the mixed bilayer. Both analogues showed reduced phospholipid head group interactions with DMPC but displayed significant interactions with the mixed lipid system. These effects support the preferential activity of these antimicrobial peptides for bacterial membranes.


References

[1]  T. Rozek, R. J. Waugh, S. T. Steinborner, J. H. Bowie, M. J. Tyler, J. C. Wallace, J. Pept. Sci. 1998, 4, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFSmt78%3D&md5=a11f26cf0295fd442dc8c9e69798f110CAS | 9620615PubMed |

[2]  C. S. Brinkworth, J. H. Bowie, Rapid Commun. Mass Spectrom. 2003, 17, 2215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVSrtrw%3D&md5=eccad3a6df8317b19be3457bfe9eb81aCAS | 14515320PubMed |

[3]  S. E. VanCompernolle, R. Jeffery Taylor, K. Oswald-Richter, J. Jiang, B. E. Youree, J. H. Bowie, M. J. Tyler, J. M. Conlon, D. Wade, C. Aiken, T. S. Dermody, V. N. KewalRamani, L. A. Rollins-Smith, D. Unutmaz, J. Virol. 2005, 79, 11598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWkt7bP&md5=25d434456508733ee7ec486dfc5f0196CAS | 16140737PubMed |

[4]  D. I. Fernandez, J. D. Gehman, F. Separovic, Biochim. Biophys. Acta 2009, 1788, 1630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1GhtLg%3D&md5=4d8812013097c02bef7888ff78093f04CAS | 19013126PubMed |

[5]  E. E. Ambroggio, F. Separovic, J. H. Bowie, G. D. Fidelio, L. A. Bagatolli, Biophys. J. 2005, 89, 1874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvF2ku78%3D&md5=33566feea1e1edd5df16fc6e660b739bCAS | 15994901PubMed |

[6]  T. Niidome, K. Kobayashi, H. Arakawa, T. Hatakeyama, H. Aoyagi, J. Pept. Sci. 2004, 10, 414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKls7Y%3D&md5=badbe91f3ebdaefb8aa66cd20cbe3f1eCAS | 15298176PubMed |

[7]  M. A. Apponyi, T. L. Pukala, C. S. Brinkworth, V. M. Maselli, J. H. Bowie, M. J. Tyler, G. W. Booker, J. Wallace, J. A. Carver, F. Separovic, J. Doyle, L. E. Llewellyn, Peptides 2004, 25, 1035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVGitrc%3D&md5=eae996a25ea123e8e86194e544f07138CAS | 15203252PubMed |

[8]  M. P. Boland, F. Separovic, Biochim. Biophys. Acta 2006, 1758, 1178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVanu7rN&md5=725b9030f92bd6c2faf6e4e428b8aedbCAS | 16580625PubMed |

[9]  B. C. S. Chia, J. A. Carver, T. D. Mulhern, J. H. Bowie, Eur. J. Biochem. 2000, 267, 1894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVCisL8%3D&md5=9532ab0b3de17429d948720844451cb7CAS | 10727928PubMed |

[10]  J. H. Jorgensen, W. Cleeland, G. Craig, M. Doem, NCCLS 1993, 13, 1.

[11]  K. Yoshida, Y. Mukai, T. Niidome, C. Takashi, Y. Tokunaga, T. Hatakeyama, H. Aoyagi, J. Pept. Res. 2001, 57, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1yqt7w%3D&md5=26dfdd3bce3e489a961ed493d52b872fCAS | 11168895PubMed |

[12]  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard – Sixth Edition, CLSI References 2003, M7A6.

[13]  J. D. Gehman, F. Luc, K. Hall, T.-H. Lee, M. P. Boland, T. L. Pukala, J. H. Bowie, M.-I. Aguilar, F. Separovic, Biochemistry 2008, 47, 8557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFSlurY%3D&md5=ce128e01f718cadb789c1c372e8a2108CAS | 18652483PubMed |

[14]  A. Mechler, S. Praporski, K. Atmuri, M. Boland, F. Separovic, L. L. Martin, Biophys. J. 2007, 93, 3907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2jt73E&md5=de0d93b58125748a2105e1cb13e1ae5fCAS | 17704161PubMed |

[15]  C. S. B. Chia, J. Torres, M. A. Cooper, I. T. Arkin, J. H. Bowie, FEBS Lett. 2002, 512, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlGht7o%3D&md5=e5a3ef2d004bf8e0420369b9181db60cCAS | 11852050PubMed |

[16]  G. W. J. Seto, S. Marwaha, D. M. Kobewka, R. N. A. H. Lewis, F. Separovic, R. N. McElhaney, Biochim. Biophys. Acta 2007, 1768, 2787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12gu77P&md5=6d2ed8cb288d4fe8b7ee84cbc58107c7CAS | 17825246PubMed |

[17]  D. I. Fernandez, M.-A. Sani, J. D. Gehman, K.-S. Hahm, F. Separovic, Eur. Biophys. J. 2011, in press.

[18]  M.-A. Sani, C. Loudet, G. Gröbner, E. J. Dufourc, J. Pept. Sci. 2007, 13, 100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOht70%3D&md5=256d0372eba0a916229bac0db2f25c9cCAS | 17106904PubMed |

[19]  K Marat, Spinworks 3.1 . 2009 (University of Manitoba: Canada).

[20]  K. P. Whittal, E. Sternin, M. Bloom, A. L. MacKay, J. Magn. Reson. 1989, 84, 64.

[21]  M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific Library Reference Manual, 3rd edn 2009, Vol. 1.12 (Network Theory Ltd: Surrey).

[22]  J. H. Davis, M. Bloom, K. W. Butler, I. C. Smith, Biochim. Biophys. Acta 1980, 597, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitFSlsbc%3D&md5=568e170d820cf3a54879bf224058929cCAS | 6892886PubMed |

[23]  J. Seelig, Biochim. Biophys. Acta 1978, 515, 105.
         | 1:CAS:528:DyaE1cXlsVWqsbc%3D&md5=addfbb2d79379b548d48d047e3c33719CAS | 356883PubMed |

[24]  J. J. Mor’e, The Levenberg–Marquardt Algorithm: Implementation and Theory 1978, Vol. 630, pp. 105–116 (Ed. G. Watson) (Springer: Berlin).

[25]  M. Bak, J. T. Rasmussen, N. C. Nielsen, J. Magn. Reson. 2000, 147, 296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKlurk%3D&md5=7fa1097d56f17a71d7964c0b54883a9cCAS | 11097821PubMed |

[26]  N. Sreerama, R. W. Woody, Anal. Biochem. 1993, 209, 32.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXht1Shsb8%3D&md5=10123a9064c9c49d0f3b956ddbcca950CAS | 8465960PubMed |

[27]  N. Sreerama, R. W. Woody, Anal. Biochem. 2000, 287, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFGhu7Y%3D&md5=aec70974c7d07ff9fa04a8b8fc1b89ccCAS | 11112271PubMed |

[28]  N. Sreerama, R. W. Woody, Protein Sci. 2004, 13, 100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWisg%3D%3D&md5=d7a6aade20e50ee160d27c52891a63b0CAS | 14691226PubMed |

[29]  J. R. Silvius, Lipid-Protein Interactions 1982 (Wiley: New York, NY).

[30]  P. J. Sherman, R. J. Jackway, J. D. Gehman, S. Praporski, G. A. McCubbin, A. Mechler, L. L. Martin, F. Separovic, J. H. Bowie, Biochemistry 2009, 48, 11892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhsbnF&md5=fdbb53ba1eea5002a5d00ad0074d3e98CAS | 19894755PubMed |

[31]  M.-A. Sani, S. Castano, E. J. Dufourc, G. Gröbner, FEBS J. 2008, 275, 561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVOksbs%3D&md5=5a8848adf5ccae32259180beb3650a98CAS | 18199286PubMed |

[32]  P. R. Cullis, B. de Kruijff, Biochim. Biophys. Acta 1979, 559, 399.
         | 1:CAS:528:DyaL3cXovFemtQ%3D%3D&md5=4f14349eccc0116b612eae298c4975e7CAS | 391283PubMed |

[33]  Y. Shai, Biochim. Biophys. Acta 1999, 1462, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslymu78%3D&md5=90678f882f54154f674d2b60f3363949CAS | 10590302PubMed |

[34]  Z. Oren, Y. Shai, Pept. Sci. 1998, 47, 451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSmsb8%3D&md5=d08423edaf776f909c9909c9b0d90470CAS |

[35]  Y. Shai, Z. Oren, Peptides 2001, 22, 1629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1SgsLg%3D&md5=41cab2a09c289b86dd6ef45b8e5235caCAS | 11587791PubMed |

[36]  Y. Shai, Pept. Sci. 2002, 66, 236.
         | 1:CAS:528:DC%2BD3sXitlOrsA%3D%3D&md5=811108758cff2eab49cc6f7927eaba4fCAS |

[37]  A. Tossi, L. Sandri, A. Giangaspero, Pept. Sci. 2000, 55, 4.
         | 1:CAS:528:DC%2BD3cXmsVylsrg%3D&md5=21f754dd2c70ab86deb051228b0f04c9CAS |

[38]  R. Thomas, V. V. Vostrikov, D. V. Greathouse, R. E. Koeppe, Biochemistry 2009, 48, 11883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVeis7nK&md5=f9e5ea48353d25a432ed53e8b36afb6fCAS | 19891499PubMed |

[39]  I. Margarit, S. Campagnoli, F. Frigerio, G. Grandi, V. De Filippis, A. Fontana, Protein Eng. 1992, 5, 543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1Cisro%3D&md5=7dfc6f29a395e8995aec7e5c92b23d3dCAS | 1438165PubMed |

[40]  H. Mozsolits, H.-J. Wirth, M. Werkmeister, M.-I. Aguilar, Biochim. Biophys. Acta 2001, 1512, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFGiurw%3D&md5=4e0e3b19e505c388db50f53106dd262eCAS | 11334625PubMed |

[41]  K. Hall, H. Mozsolits, M.-I. Aguilar, Lett. Pept. Sci. 2003, 10, 475.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWis7rM&md5=6f0a52a921f94f65e3e66d38355ed528CAS |

[42]  S. R. Dennison, J. Wallace, F. Harris, D. A. Phoenix, Protein Pept. Lett. 2003, 10, 497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslylsLg%3D&md5=f8f960eace81a9706128dd059f7c448eCAS | 14561139PubMed |

[43]  H. Jenssen, P. Hamill, R. E. W. Hancock, Clin. Microbiol. Rev. 2006, 19, 491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVaqsrk%3D&md5=c32d4b059011ac3ad0c8482039534170CAS | 16847082PubMed |

[44]  J. Garner, S. I. Inglis, J. Hook, F. Separovic, M. M. Harding, Eur. Biophys. J. 2008, 37, 1031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1arsbs%3D&md5=e9c71e620127a9ae0bfc2be7db759cb6CAS | 18449532PubMed |