New ‘Green’ Corrosion Inhibitors Based on Rare Earth Compounds
Maria Forsyth A C , Marianne Seter A , Bruce Hinton A , Glen Deacon B and Peter Junk BA ITRI, Deakin University, Burwood Campus, Vic. 3125, Australia.
B School of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: maria.forsyth@deakin.edu.au
Australian Journal of Chemistry 64(6) 812-819 https://doi.org/10.1071/CH11092
Submitted: 25 February 2011 Accepted: 23 March 2011 Published: 27 June 2011
Abstract
A series of rare earth organic compounds pioneered by our group have been shown to provide a viable alternative to the use of chromates as corrosion inhibitors for some steel and aluminium applications. For example we have shown that the lanthanum 4-hydroxy cinnamate offers excellent corrosion mitigation for mild steel in aqueous environments while rare earth diphenyl phosphates offer the best protection in the case of aluminium alloys. In both cases the protection appears to be related to the formation of a nanometre thick interphase occurring on the surface that reduces the electrochemical processes leading to metal loss or pitting. Very recent work has indicated that we may even be able to address the challenging issue of stress corrosion cracking of high strength steels. Furthermore, filiform corrosion can be suppressed when selected rare earth inhibitor compounds are added as pigments to a polymer coating. There is little doubt from the work thus far that a synergy exists between the rare earth and organic inhibitor components in these novel compounds. This paper reviews some of the published research conducted by the senior author and colleagues over the past 10 years in this developing field of green corrosion inhibitors.
References
[1] J. Sinko, Prog. Org. Coat. 2001, 42, 267.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslGisrg%3D&md5=3c1c85c14f72874376ce441941d31501CAS |
[2] C. Monticelli, A. Frignani, G. Trabanelli, J. Appl. Electrochem. 2002, 32, 527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1amsrk%3D&md5=22bbf86407e07b007be50b428f2cf637CAS |
[3] E. Rocca, C. Caillet, P. Steinmetz, International Corrosion Congress: Frontiers in Corrosion Science and Technology, 15th, Granada, Spain. 2002; 654(1).
[4] B. R. W. Hinton, J. Alloy. Comp. 1992, 180, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitF2iurk%3D&md5=a4caeb385cde9d3d2362238636b3f10dCAS |
[5] D. A. Jones, Principles and Prevention of Corrosion 1992 (Macmillan. Publishing Company: New York, NY).
[6] K. W. Kendig, R. G. Buchheit, Critical Rev. Corrosion Sci. Engineer. 2003, 59, 379.
| 1:CAS:528:DC%2BD3sXjslyju7Y%3D&md5=562052caaff019fd52cb4dae16582c91CAS |
[7] G. B. Deacon, M. Forsyth, P. C. Junk, W. W. Lee, Chem. Aust. 2008, 18.
| 1:CAS:528:DC%2BD1cXhsFWitLbO&md5=2b095c6b5842679705aaa9d51d73f31fCAS |
[8] G. B. Deacon, M. Forsyth, P. C. Junk, S. G. Leary, G. J. Moxey, Polyhedron 2006, 25, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFyhtg%3D%3D&md5=77d4d2eabf304887160edb8ce7f6a166CAS |
[9] T. Behrsing, A. M. Bond, G. B. Deacon, C. M. Forsyth, M. Forsyth, K. J. Kamble, B. W. Skelton, A. H. White, Inorg. Chim. Acta 2003, 352, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslKqtLY%3D&md5=da840cc5fd45286046cb67ccaafcc81bCAS |
[10] M. Forsyth, K. Wilson, T. Behrsing, C. M. Forsyth, G. B. Deacon, A. Phanasgoankar, Corrosion 2002, 58, 953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Ghtbg%3D&md5=7cb72d8ceb154e94231ab4c12936c3deCAS |
[11] F. Blin, S. G. Leary, K. Wilson, G. B. Deacon, P. C. Junk, M. Forsyth, J. Appl. Electrochem. 2004, 34, 591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisV2jsro%3D&md5=550fde1c6963a556b21ff718fbe139bdCAS |
[12] F. Blin, S. G. Leary, G. B. Deacon, P. C. Junk, M. Forsyth, Corros. Sci. 2006, 48, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1yr&md5=e22f1a7e21c94d34b2c531d31873678aCAS |
[13] G. B. Deacon, M. Forsyth, P. C. Junk, S. G. Leary, W. W. Lee, J. Inorg. Gen. Chem. 2009, 635, 833.
| 1:CAS:528:DC%2BD1MXntVSns7Y%3D&md5=c714fad6061a82060533e4ff73a7e103CAS |
[14] G. B. Deacon, C. M. Forsyth, P. C. Junk, M. Hilder, S. G. Leary, C. Bromant, I. Pantenburg, G. Meyer, B.W. Skelton, A. H. White, J. Inorg. Gen. Chem. 2008, 634, 91.
| 1:CAS:528:DC%2BD1cXltF2jsbo%3D&md5=edfe9171c6c73db754ea8b24c204b739CAS |
[15] M. Forsyth, T. A. Markley, D. Ho, G. B. Deacon, P. C. Junk, B. R. W. Hinton, A. Hughes, Corrosion 2008, 64, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVyrtLs%3D&md5=59bced27d33059fead0e6f788c8e383fCAS |
[16] T. A. Markley, M. Forsyth, A. E. Hughes, Electrochim. Acta 2007, 52, 4024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlGntro%3D&md5=b2f99071e3a3d2d896fa55604fa4cb63CAS |
[17] J.-A. Hill, T. A. Markley, M. Forsyth, P. C. Howlett, B. R. W. Hinton, J. Alloy. Comp. 2011, 509, 1683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVCksA%3D%3D&md5=a1b8c41d7b09bab8975014858a3b543aCAS |
[18] W.W. Lee, Thesis: Rare Earth Hydroxycinnamates and Hydroxycinnamate-derivative Complexes as Corrosion Inhibitors 2010 (Monash University: Clayton).
[19] G. B. Deacon, C. M. Forsyth, T. Behrsing, K. Konstas, M. Forsyth, Chem. Commun. 2002, 2820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVCntbY%3D&md5=5da9d2880dc0a1a2e1fb6e515554fadeCAS |
[20] M. Forsyth, C. M. Forsyth, K. Wilson, T. Behrsing, G. B. Deacon, Corros. Sci. 2002, 44, 2651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKjtbs%3D&md5=6a067b37ee027964061544dddabf47d3CAS |
[21] G. B. Deacon, C. M. Forsyth, M. Forsyth, J. Inorg. Gen. Chem. 2003, 629, 1472.
| 1:CAS:528:DC%2BD3sXmvVGht7Y%3D&md5=578e864dba697e01cee5eae60d3a43baCAS |
[22] R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie, G. L. Zender, J. Electrochem. Soc. 1997, 144, 2621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFOhsb8%3D&md5=368ec899949e226af0be8985854e839eCAS |
[23] N. Birbilis, R. G. Buchheit, J. Electrochem. Soc. 2005, 152, B140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSjt70%3D&md5=dc4de0f8b47d5c9cca94404a36dcd87cCAS |
[24] M. F. Montemor, W. Trabelsi, M. Zheludevich, M. G. S. Ferreira, Prog. Org. Coat. 2006, 57, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlCqu7c%3D&md5=1de9854af089096cbbcd1e67e913b5faCAS |
[25] F. Blin, Thesis: Rare Earth Metal Cinnamate Compounds for Corrosion Inhibition of Mild Steel: Efficiency and Mechanisms 2005 (Monash University: Clayton).
[26] A. Pandey, N. S. S. Murty, S. M. Patel, Process Contr. Qual. 2000, 11, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlelu7g%3D&md5=0208cd68428351f50e0094ef9373ceabCAS |
[27] T. A. Markley, Thesis: Corrosion Mitigation of Aerospace Alloys using Rare Earth Diphenyl Phosphates 2008 (Monash University: Clayton).
[28] M. Behrouzvaziri, B. R. W. Hinton, M. T. Forsyth, Australasian Corrosion Association 2008: 1–12.
[29] D. Ho, N. Brack, J. Scully, T. A. Markley, M. Forsyth, B. R. W. Hinton, J. Electrochem. Soc. 2006, 153, B392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2ht7Y%3D&md5=4afe97ae8f75f90d03f396b34c803be6CAS |
[30] ASTM. Standard guide for testing filiform corrosion resistance of organic coatings on metal. Corrosion tests and standards – Application and Interpretation. ASTM International: Baboian, R. 2004.
[31] G. Williams, H. N. McMurray, Electrochem. Commun. 2003, 5, 871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Wgsbg%3D&md5=e73ff879e13657829a5cc24cf8abd8b3CAS |
[32] J. Weissenrieder, C. Leygraf, J. Electrochem. Soc. 2004, 151, B165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Onu7w%3D&md5=91c5cd84e6645c2fe03b98cc9feba82bCAS |
[33] A. E. Hughes, D. Ho, M. Forsyth, B. R. W. Hinton, Rare earth inhibited systems. Tri-Service Corrosion Conference 2005.