Template-assisted Synthesis of Polymer–Li Composites with Fractal Patterns
Li Tan A , Ge Wang A C , Wenjun Dong A , Mu Yang A , Jingning Shan B and Shasha Li AA School of Materials Science and Engineering, University of Science and Technology Beijing, No 30 Xueyuan Road, Haidian District, Beijing 100083, PR China.
B Mechanical and Aerospace Engineering Department, Princeton University, Princeton, NJ 08540, USA.
C Corresponding author. Email: gewang@mater.ustb.edu.cn
Australian Journal of Chemistry 64(2) 190-196 https://doi.org/10.1071/CH10355
Submitted: 27 September 2010 Accepted: 1 November 2010 Published: 15 February 2011
Abstract
A facile route for the synthesis of polymer–lithium halide composites with fractal patterns ranging from the nano- to microscale has been developed by employing a two-step template-assisted approach at room temperature. First, polydimethyl diallyl ammonium chloride (PDDA) is synthesized through the controlled polymerization of the monomers inside the interlayers of montmorillonite (MMT). Subsequently, the PDDA-MMT is used as a template to react with LiCl/THF solution. The polymer segments were separated from the MMT interlayer space by employing a reverse ion-exchange process. It was found that the morphology of the fractal patterns can be controlled by varying the polymerization concentration of the monomer. It is concluded that the limited polymerization of PDDA and the reverse ion-exchange process produce the non-equilibrium conditions that serve as the critical factors in forming the fractal patterns. The mechanism for the formation of the fractal structure is proposed and discussed in detail.
References
[1] N. Kurono, M. Yamaguchi, K. Suzuki, T. Ohkuma, J. Org. Chem. 2005, 70, 6530.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ahu7s%3D&md5=8117dd508bd3266034291c76452ebd3cCAS | 16050725PubMed |
[2] Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, Y. Wei, J. Am. Chem. Soc. 2008, 130, 5036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOjur8%3D&md5=9db9c615612d39601e53be9d756e411aCAS | 18341281PubMed |
[3] M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 137, 6124.
[4] T. Rüther, T. D. Huynh, J. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, J. H. Davis Jr, Chem. Mater. 2010, 22, 1038.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. V. Saraf, D. Hu, J. Zhang, G. L. Graff, J. Liu, M. A. Pope, I. A. Aksay, ACS Nano 2010, 4, 1587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVais74%3D&md5=c67b25d509a30f95baba96a83a9af157CAS | 20184383PubMed |
[6] M. Konarova, I. Taniguchi, J. Power Sources 2010, 195, 3661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WgtbY%3D&md5=3b8e2cdb9e129ca60b8943d904cda888CAS |
[7] M. Jo, Y. S. Hong, J. Choo, J. Choa, J. Electrochem. Soc. 2009, 156, A430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVamsb8%3D&md5=b35673a3ccc5195044867bbfa9b1454bCAS |
[8] E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou, Nano Lett. 2009, 9, 1045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslOqsbk%3D&md5=fcfdc6d1c513723c8f88710c03311cd8CAS | 19209916PubMed |
[9] X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater. 2008, 20, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wns7Y%3D&md5=e283de00e3e1df6c335890144de4f77fCAS |
[10] J. W. Seo, J. T. Jang, S. W. Park, C. J. Kim, B. W. Park, J. W. Cheon, Adv. Mater. 2008, 20, 4269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhu73E&md5=b64ef0419b19a8784df2ffdee38b0b79CAS |
[11] M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygurjN&md5=e028bf392207e9feb17df0855c2e3548CAS |
[12] Y. G. Wang, Y. R. Wang, E. Hosono, K. W. Wang, H. S. Zhou, Angew. Chem. Int. Ed. 2008, 47, 7461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SjtbnE&md5=b660988bfa835460ec9be91a3cd58c78CAS |
[13] C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVansr8%3D&md5=e95897e43ac2870c83eac26fafaa1b05CAS | 20217798PubMed |
[14] M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot, J. M. Tarascon, Nat. Mater. 2009, 8, 120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1aqsw%3D%3D&md5=b9fbae1d106561e5af2a32f8528fbaf2CAS | 19151701PubMed |
[15] T. S. Khire, J. Kundu, S. C. Kundu, V. K. Yadavalli, Soft Matter. 2010, 6, 2066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Ggtrc%3D&md5=d16005021381373617e3f75cc07b1375CAS |
[16] A. Mourran, M. Moller, in Progress in Understanding Polymer Crystallization 2007, Vol. 714, pp. 179–200 (Eds G. Reiter, I. Botiz, L. Graveleau, N. Grozev, K. Albrecht) (Springer: Berlin, Heidelberg).
[17] A. Lomander, W. M. Hwang, S. G. Zhang, Nano Lett. 2005, 5, 1255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksl2mtb8%3D&md5=d8126319e4e083ee6b27cee211d50331CAS | 16178220PubMed |
[18] R. Sneer, M. J. Weygand, K. Kjaer, D. A. Tirrell, H. Rapaport, ChemPhysChem 2004, 5, 747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCmsL8%3D&md5=a8c08f8d921c0b60f89435d4e495895aCAS | 15179733PubMed |
[19] M. M. Murr, D. E. Morse, Proc. Natl. Acad. Sci. USA 2005, 102, 11657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFGgtrs%3D&md5=0193020814743fc843e8042ec3db62cdCAS |
[20] G. Zou, K. Xiong, C. Jiang, H. Li, T. Li, J. Du, Y. Qian, J. Phys. Chem. B 2005, 109, 18356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslCiurw%3D&md5=cd69111b8e1fac2424cc3acf7bf4ceacCAS | 16853363PubMed |
[21] H. You, J. Fang, F. Chen, M. Shi, X. Song, B. Ding, J. Phys. Chem. C 2008, 112, 16301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKnsLrF&md5=f61519485b83941cce59af33eeac54a6CAS |
[22] T. Shtoyko, E. G. Matveeva, I.-F. Chang, Z. Gryczynski, E. Goldys, I. Gryczynski, Anal. Chem. 2008, 80, 1962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFehtb8%3D&md5=881bd9ea1539688493f63a30d86bad68CAS | 18288816PubMed |
[23] W. Dong, X. Li, L. Shang, Y. Zheng, G. Wang, C. Li, Nanotechnology 2008, 19, 1.
| Crossref | GoogleScholarGoogle Scholar | 19436766PubMed |
[24] W. A. Petka, J. L. Harden, K. P. McGrath, D. Tirrell, Science 1998, 281, 389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslagu74%3D&md5=4436053f270addc1f61c5a5a9f85aed8CAS | 9665877PubMed |
[25] D. Chandler, Nature 2005, 437, 640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsLzM&md5=4dd227ee36d1b7436910dd0d90626fb1CAS | 16193038PubMed |
[26] V. Georgakilas, D. Gournis, A. B. Bourlinos, M. A. Karakassides, D. Petridis, Chemistry 2003, 9, 3904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFWrtL4%3D&md5=7f7f71d45f2a8131f0aeb50f3e28d0bfCAS | 12916116PubMed |
[27] L. Feng, M. Yang, G. Wang, Chem. J. Chinese Universities 2006, 27, 2213.
| 1:CAS:528:DC%2BD28Xht1OqtL%2FJ&md5=e86e0fb0fc50b31a90784e27c20a201cCAS |
[28] A. Radian, Y. G. Mishael, Environ. Sci. Technol. 2008, 42, 1511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFShtLk%3D&md5=ea6fe80ed1fcf0fdaf1f639e3fc6a3e4CAS | 18441796PubMed |
[29] H. D. Batte, A. G. Marangoni, Cryst. Growth Des. 2005, 5, 1703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFCqtbg%3D&md5=5e2bd7efb92e2ffa75107cca50043302CAS |
[30] X. Zhang, Y. Wang, W. Wang, S. Bolisetty, Y. Lu, M. Ballauff, Langmuir 2009, 25, 2075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlOhsw%3D%3D&md5=4e0ab441a42a972a0495e11dbfa5712fCAS | 19161280PubMed |
[31] D. Ishii, D. Tatsumi, T. Matsumoto, Biomacromolecules 2003, 4, 1238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVOms78%3D&md5=57ab4db00cc794a3779cce698e256f70CAS | 12959589PubMed |
[32] E. Lima, J. Valente, P. Bosch, V. Lara, J. Phys. Chem. B 2005, 109, 17435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVCntL4%3D&md5=a2d79c45f7c5955c03c26ba4935292abCAS | 16853229PubMed |
[33] F. Mendoza, N. A. Valous, P. Allen, T. A. Kenny, P. Ward, D. W. Sun, Meat Sci. 2009, 81, 313.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. A. Pruess, in Fractals in the Earth Sciences 1994, pp. 65–75 (Eds C. C. Barton, P. R. Lapointe) (Plenum Press: New York).
[35] Y. J. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 2008, 20, 848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqs7vO&md5=b23d45d98dae45f31c09a72c2bd0a49bCAS |
[36] S. Sinha Ray, M. Okamoto, Prog. Polym. Sci. 2003, 28, 1539.
| Crossref | GoogleScholarGoogle Scholar |