Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Amino Acid-derived Protic Ionic Liquids: Physicochemical Properties and Behaviour as Amphiphile Self-assembly Media

Jiayi Wang A B , Tamar L. Greaves B , Danielle F. Kennedy B , Asoka Weerawardena B , Gonghua Song A and Calum J. Drummond B C
+ Author Affiliations
- Author Affiliations

A Shanghai Key Laboratory of Chemical Biology, School of Pharmacy,East China University of Science and Technology,Shanghai 200237, PR China.

B CSIRO Materials Science and Engineering (CMSE), Bag 33, Clayton,Vic. 3169, Australia.

C Corresponding author. Email: calum.drummond@csiro.au

Australian Journal of Chemistry 64(2) 180-189 https://doi.org/10.1071/CH10314
Submitted: 26 August 2010  Accepted: 5 January 2011   Published: 15 February 2011

Abstract

The thermal phase transitions and physicochemical properties of a series of 21 amino acid-derived protic ionic liquids and four protic molten salts have been investigated. Structure–property comparisons for this series were investigated for alkyl- and cyclic amino acid cations, and ethoxy and methoxy groups on the cation, combined with nitrate or various carboxylate-containing anions. All the protic fused salts were found to be ‘fragile’. Most of the protic fused salts exhibited a glass transition, with the transition temperatures ranging from –90° to –42°C. Viscosities and conductivities ranged from 0.03 to 15.46 Pa s and 0.02 to 2.20 mS cm–1 at 25°C respectively. The protic ionic liquids alanine methyl ester glycolate, proline methyl ester nitrate, and proline methyl ester glycolate were found to be capable of supporting amphiphile self-assembly. Lamellar or hexagonal liquid crystalline phases were observed with the cationic surfactant hexadecyltrimethylammonium bromide and the non-ionic surfactant Myverol 18–99K.


References

[1]  K. Fukumoto, M. Yoshizawa, H. Ohno, J. Am. Chem. Soc. 2005, 127, 2398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlSgsA%3D%3D&md5=dd43f892d51d63f85485f6b50ccf9b8eCAS | 15724987PubMed |

[2]  K. Fukumoto, Y. Kohno, H. Ohno, Chem. Lett. 2006, 35, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1GrtbfE&md5=258c2f5cd7f5324a52e57ff077699f5fCAS |

[3]  Y. Y. Jiang, G. N. Wang, Z. Zhou, Y. T. Wu, J. Geng, Z. B. Zhang, Chem. Commun. 2008, 505.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. C. Plaquevent, J. Levillain, F. Guillen, C. Malhiac, A. C. Gaumont, Chem. Rev. 2008, 108, 5035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWks7rI&md5=dceabb4174c6fec106e8e2b08865a272CAS | 19053329PubMed |

[5]  G. H. Tao, L. He, W. S. Liu, L. Xu, W. Xiong, T. Wang, Y. Kou, Green Chem. 2006, 8, 639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVSgsLw%3D&md5=1c0ca93cb2f0c4dca420a87da117fb41CAS |

[6]  G. H. Tao, L. He, N. Sun, Y. Kou, Chem. Commun. 2005, 3562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvF2itb8%3D&md5=6516b83f8fd563313e90b3559c0a15f1CAS |

[7]  W. L. Bao, Z. M. Wang, Y. X. Li, J. Org. Chem. 2003, 68, 591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCmsLg%3D&md5=a5eafecdb72006be9167ea0c62dbb36bCAS | 12530888PubMed |

[8]  D. K. Bwambok, H. M. Marwani, V. E. Fernand, S. O. Fakayode, M. Lowry, I. Negulescu, R. M. Strongin, I. M. Warner, Chirality 2008, 20, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yktr8%3D&md5=c8b13ca0163e21dde67fe14b67b4ce99CAS | 18092298PubMed |

[9]  X. W. Chen, X. H. Li, A. X. Hu, F. R. Wang, Tetrahedron Asymmetry 2008, 19, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  D. F. Evans, A. Yamauchi, R. Roman, E. Z. Casassa, J. Colloid Interface Sci. 1982, 88, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktFahtbs%3D&md5=378d2daef7d805a6158e0cceb80fb2e2CAS |

[11]  R. Atkin, L. M. De Fina, U. Kiederling, G. G. Warr, J. Phys. Chem. B 2009, 113, 12201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWktbbO&md5=bc536099a973a82d7362c881a4faf483CAS | 19691356PubMed |

[12]  N. Byrne, C. A. Angell, J. Mol. Biol. 2008, 378, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslWksbs%3D&md5=9d551f58e35a18fa5ac3b9c4a5a29637CAS | 18384810PubMed |

[13]  K. Fumino, A. Wulf, R. Ludwig, Phys. Chem. Chem. Phys. 2009, 11, 8790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sqs7bE&md5=39f9d10f2950f7ab91aa3827865e935bCAS | 20449024PubMed |

[14]  K. M. Johansson, E. I. Izgorodina, M. Forsyth, D. R. MacFarlane, K. R. Seddon, Phys. Chem. Chem. Phys. 2008, 10, 2972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKit7c%3D&md5=9f7bd3cfe95e9c173945ce2d29888470CAS | 18473045PubMed |

[15]  C. Zhao, G. Burrell, A. A. J. Torriero, F. Separovic, N. F. Dunlop, D. R. MacFarlane, A. M. Bond, J. Phys. Chem. B 2008, 112, 6923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGhtr4%3D&md5=b2efce01a73dc1ee21819bf2910f4649CAS | 18489145PubMed |

[16]  Greaves  T. L., Drummond  C. J., Chem. Rev. 2008, 108, 206 and references therein. 10.1021/CR068040U

[17]  Greaves  T. L., Drummond  C. J., Chem. Soc. Rev. 2008, 37, 1709 and references therein. 10.1039/B801395K

[18]  H. S. Gao, Z. G. Hu, J. J. Wang, Z. F. Qiu, F. Q. Fan, Aust. J. Chem. 2008, 61, 521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFGhtrc%3D&md5=496986f84cd2085ab234766e9f5ef27aCAS |

[19]  K. L. Curtis, E. L. Evinson, S. Handa, K. Singh, Org. Biomol. Chem. 2007, 5, 3544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOjurrI&md5=7e66f54adeac05bdfe096ed85186f875CAS | 17943217PubMed |

[20]  G. N. Ziakas, E. A. Rekka, A. M. Gavalas, P. T. Eleftheriou, P. N. Kourounakis, Bioorg. Med. Chem. 2006, 14, 5616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmslyqsrs%3D&md5=c70895a783f4086fb1cd6087176e5b5eCAS | 16690318PubMed |

[21]  T. L. Greaves, A. Weerawardena, I. Krodkiewska, C. J. Drummond, J. Phys. Chem. B 2008, 112, 896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFGi&md5=c3649344c2bd81f68ec99717c9ac06e2CAS | 18166036PubMed |

[22]  D. F. Kennedy, C. J. Drummond, J. Phys. Chem. B 2009, 113, 5690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKksLo%3D&md5=0e98dbda7e4943b0a521e7d2a5d31fdaCAS | 19385688PubMed |

[23]  B. Nuthakki, T. L. Greaves, I. Krodkiewska, A. Weerawardena, M. I. Burgar, R. J. Mulder, C. J. Drummond, Aust. J. Chem. 2007, 60, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeis78%3D&md5=60195bfc5580b342ba7b69183eae280eCAS |

[24]  M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 2003, 125, 15411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1aktL4%3D&md5=9af3fe0d9795d814a7c58de08e5f1a9aCAS | 14664586PubMed |

[25]  J. P. Belieres, C. A. Angell, J. Phys. Chem. B 2007, 111, 4926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFCitb8%3D&md5=717c4bf24284c0730557d2688bd442b3CAS | 17417896PubMed |

[26]  C. J. Drummond, F. Grieser, T. W. Healy, J. Chem. Soc., Faraday Trans. I 1989, 85, 521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVagu7s%3D&md5=d96391a6567677352fd3fd90b017d941CAS |

[27]  F. Kohler, H. Atrops, H. Kalali, E. Liebermann, E. Wilhelm, F. Ratkovics, T. Salamon, J. Phys. Chem. 1981, 85, 2520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvFKgs7g%3D&md5=2d88948536e204bc10aae7c90b2868ccCAS |

[28]  F. Kohler, R. Gopal, G. Gotze, H. Atrops, M. A. Demiriz, E. Liebermann, E. Wilhelm, F. Ratkovics, B. Palagyi, J. Phys. Chem. 1981, 85, 2524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvFKks70%3D&md5=62be19b0d55d70aabe9ca85b582d1dc6CAS |

[29]  T. L. Greaves, A. Weerawardena, C. Fong, I. Krodkiewska, C. J. Drummond, J. Phys. Chem. B 2006, 110, 22479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyhsbfI&md5=8fce97349c3c5b0a8bb40f35e9f41e1cCAS | 17091990PubMed |

[30]  W. Xu, E. I. Cooper, C. A. Angell, J. Phys. Chem. B 2003, 107, 6170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFyhsL0%3D&md5=4ed4f7f3e15bf470f3eb525828700543CAS |

[31]  D. F. Evans, Langmuir 1988, 4, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlSlsg%3D%3D&md5=9275055c593d4ce656111dc4e8792adaCAS |

[32]  T. L. Greaves, A. Weerawardena, C. Fong, C. J. Drummond, J. Phys. Chem. B 2007, 111, 4082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Gis7o%3D&md5=5ed9469f8bd461f9b89118e3097c5427CAS | 17397214PubMed |

[33]  T. L. Greaves, A. Weerawardena, C. Fong, C. J. Drummond, Langmuir 2007, 23, 402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12qt77M&md5=045a22832411bc99f15eedc475b433f5CAS | 17209586PubMed |