Novel Doped Tungstovanadate and Molybdovanadate with Bi-antimony-Capped Keggin Structure
Zhangang Han A B , Jingjing Wu A , Yuanzhe Gao A and Xueliang Zhai AA College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050016, China.
B Corresponding author. Email: hanzg116@yahoo.com.cn
Australian Journal of Chemistry 64(2) 197-205 https://doi.org/10.1071/CH10220
Submitted: 30 May 2010 Accepted: 23 November 2010 Published: 15 February 2011
Abstract
Three novel V-centred Keggin-based compounds containing cap-shaped Sb atoms: (HDMF)2[(VO4)W5.65V7.74Sb2.61O36.77]·6H2O (1), [Co(phen)3]2[(VO4)Mo9.58V2.42Sb2O36]·6H2O (2) and [Ni(phen)2(H2O)]2[(VO4)Mo8V4Sb2O36]·2H2O (3) (DMF = dimethylformamide; phen = 1,10-phenanthroline) have been synthesized and characterized. X-ray diffraction analysis revealed that compound 1 consists of an unusually one-dimensional 12-tungstovanadate Keggin-based polymer, in which the reduced tungstovanadate Keggin species are stabilized by introducing capping {VO} and {Sb} groups and then linked into chains via V(Sb)–O–V(Sb) interactions. Both 2 and 3 are built from secondary metal–ligand groups (Co-phen for 2, Ni-phen for 3) and 12-molybdovanadate doped Keggin-type cores with two antimony atoms capping two opposite sites. The anion in 3 represents a bi-capped and bi-supported Keggin-type structure. The electrochemical properties of 2- and 3-modified carbon paste electrodes (2-CPE and 3-CPE) are also studied.
References
[1] (a) H. N. Miras, G. J. T. Cooper, D.-L. Long, H. Bögge, A. Müller, C. Streb, L. Cronin, Science 2010, 327, 72.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksrbP&md5=08133d7a59f2c3cfe35798008085edd6CAS | 20044572PubMed |
(b) D. L. Long, Y. F. Song, E. F. Wilson, P. Kgerler, S. X. Guo, A. M. Bond, J. S. J. Hargreaves, L. Cronin, Angew. Chem. Int. Ed. 2008, 47, 4384.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, Angew. Chem. Int. Ed. 2000, 39, 1782.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) L. H. Bi, E. V. Chubarova, N. H. Nsouli, M. H. Dickman, U. Kortz, B. Keita, L. Nadjo, Inorg. Chem. 2006, 45, 8575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFCru74%3D&md5=e60ba956324e8f094a195d9ab4f0c6e7CAS | 17029368PubMed |
(b) H. Q. Tan, Y. G. Li, Z. M. Zhang, C. Qin, X. L. Wang, E. B. Wang, Z. M. Su, J. Am. Chem. Soc. 2007, 129, 10066.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) E. Coronado, J. R. Galán-Mascarós, C. Giménez-Saiz, C. J. Gómez-García, E. Martínez-Ferrero, M. Almeida, E. B. Lopes, Adv. Mater. 2004, 16, 324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVansr0%3D&md5=5322ebf605263d58576556f110b674f3CAS |
(b) C. Allain, S. Favette, L. M. Chamoreau, J. Vaissermann, L. Ruhlmann, B. Hasenknopf, Eur. J. Inorg. Chem. 2008, 2008, 3433.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) D. L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaitb7P&md5=78361cdf92f8a3850cc16b052bb53980CAS | 17173149PubMed |
(b) T. B. Liu, E. Diemann, H. L. Li, A. W. M. Dress, A. Müller, Nature 2003, 426, 59.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) D. L. Long, L. Cronin, Chemistry 2006, 12, 3698.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFKltb0%3D&md5=3bde83cff655b932742aa7a07969f674CAS | 16416497PubMed |
(b) Y. F. Song, N. McMillan, D. L. Long, J. Thiel, Y. L. Ding, H. S. Chen, N. Gadegaard, L. Cronin, Chemistry 2008, 14, 2349.
| Crossref | GoogleScholarGoogle Scholar |
[6] C. P. Pradeep, D. L. Long, G. N. Newton, Y. F. Song, L. Cronin, Angew. Chem. Int. Ed. 2008, 47, 4388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFOgtLs%3D&md5=abbbbf9309bacdbefb56d3ecd4df45d3CAS |
[7] (a) M. T. Pope, A. Müller, Angew. Chem. Int. Ed. Engl. 1991, 30, 34.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. C. W. Baker, V. E. S. Baker, K. Eriks, M. T. Pope, M. Shibata, O. W. Rollins, J. H. Fang, L. L. Koh, J. Am. Chem. Soc. 1966, 88, 2329.
| Crossref | GoogleScholarGoogle Scholar |
[8] Y. G. Li, E. B. Wang, S. T. Wang, Y. B. Duan, J. Mol. Struct. 2002, 611, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlKlsL4%3D&md5=d40b928e16156df64c2a79cf8183b40eCAS |
[9] (a) M. I. Khan, Q. Chen, J. Zubieta, Inorg. Chem. 1993, 32, 2924.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1WlsLg%3D&md5=9f7a60c38cbacde84e968e54f652eee2CAS |
(b) A. Dolbecq, E. Cadot, D. Eisner, F. Sécheresse, Inorg. Chem. 1999, 38, 4217.
| Crossref | GoogleScholarGoogle Scholar |
[10] Q. Chen, C. L. Hill, Inorg. Chem. 1996, 35, 2403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhslags7o%3D&md5=47c3f51a9adb0b728acf5acc3b90248dCAS | 11666445PubMed |
[11] (a) G. Y. Luan, Y. G. Li, E. B. Wang, Z. H. Han, C. W. Hu, N. H. Hu, H. Q. Jia, Inorg. Chem. Commun. 2002, 5, 509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkslars7c%3D&md5=3aa270246ce85ec2525aebd3ed4bf718CAS |
(b) J. M. Maestre, J. M. Poblet, C. Bo, N. C. Pastor, P. G. Romero, Inorg. Chem. 1998, 37, 3444.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Xu, J. Q. Xu, G. Y. Yang, Polyhedron 1998, 17, 2441.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Xu, H. G. Zhu, H. Cai, X. Z. You, Chem. Commun. 1999, 787.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) Y. Zhang, R. Haushalter, A. Clearfield, J. Chem. Soc. Chem. Commun. 1995, 1149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt12gtL4%3D&md5=97adadf22f3b613b9454a2a80364b860CAS |
(b) A. Müller, M. Koop, P. Schiffels, H. Bögge, J. Chem. Soc. Chem. Commun. 1997, 1715.
(c) G. Y. Luan, E. B. Wang, Z. B. Han, Y. G. Li, Inorg. Chem. Commun. 2001, 4, 541.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. B. Yang, C. Z. Lu, X. P. Zhan, H. H. Zhuang, Inorg. Chem. 2002, 41, 4621.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. I. Khan, J. Zubieta, P. Toscano, Inorg. Chim. Acta 1992, 193, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xktl2isr4%3D&md5=1de8b7d41645148183caca0ec0d2c5edCAS |
(b) A. Müller, A. M. Penk, J. Döring, Inorg. Chem. 1991, 30, 4953.
(c) G. Q. Huang, S. W. Zhang, Y. G. Wei, M. C. Shao, Polyhedron 1993, 12, 1483.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. I. Khan, Q. Chen, J. Zubieta, Inorg. Chim. Acta. 1993, 212, 199.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Kato, A. Kobayaski, Y. Sasaki, J. Am. Chem. Soc. 1980, 102, 6571.
| Crossref | GoogleScholarGoogle Scholar |
[14] D. Hou, K. S. Hagen, C. L. Hill, J. Chem. Soc. Chem. Commun. 1993, 426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVCnu7w%3D&md5=f8d65a119eb7b171220131030cd7be99CAS |
[15] (a) S. Y. Shi, Y. H. Sun, Y. Chen, J. N. Xu, X. B. Cui, Y. Wang, G. W. Wang, G. D. Yang, J. Q. Xu, Dalton Trans. 2010, 39, 1389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFeiur0%3D&md5=f7157cef3deb0657908f19d7f0e399c1CAS | 20104367PubMed |
(b) Q.-B. Zhang, Y.-K. Lu, Y.-B. Liu, J. Lu, M.-H. Bi, J.-H. Yu, T.-G. Wang, J.-Q. Xu, J. Liu, Inorg. Chem. Commun. 2006, 9, 544.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y.-K. Lu, J.-N. Xu, X.-B. Cui, J. Jin, S. Yun, J.-Q. Xu, Inorg. Chem. Commun. 2010, 13, 46.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) A. Müller, C. Beugholt, P. Kögerler, H. Bögge, S. Bud’ko, M. Luban, Inorg. Chem. 2000, 39, 5176.
| Crossref | GoogleScholarGoogle Scholar | 11187464PubMed |
(b) M. Yuan, Y. G. Li, E. B. Wang, C. G. Tian, L. Wang, C. W. Hu, N. H. Hu, H. Q. Jia, Inorg. Chem. 2003, 42, 3670.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Lei, J. G. Mao, Y. Q. Sun, J. L. Song, Inorg. Chem. 2004, 43, 1964.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. P. Bai, Y. G. Li, E. B. Wang, X. L. Wang, Y. Lu, L. Xu, J. Mol. Struct. 2005, 752, 54.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Jin, Y. F. Qi, E. B. Wang, Y. G. Li, X. L. Wang, C. Qin, S. Chang, Cryst. Growth Des. 2006, 6, 2693.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. X. Tian, Z. G. Han, J. Peng, J. Ying, J. Q. Sha, B. X. Dong, J. L. Zhai, H. S. Liu, Inorg. Chim. Acta 2008, 361, 1332.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) F. Cavani, M. Koutyrev, F. Trifiro, Catal. Today 1996, 28, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVWnsbw%3D&md5=ba7c35995d1b95699759694cfb883cb3CAS |
(b) F. Cavani, M. Koutyrev, F. Trifiro, Catal. Today 1995, 24, 365.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Ohyama, M. Takahashi, M. Takeda, Hyperfine Interact. 2005, 161, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFCltbc%3D&md5=3f14a594ccdadd60d15dfd4da96eeba8CAS |
[19] (a) N. S. Fender, I. A. Kahwa, A. J. P. White, D. J. Williams, J. Chem. Soc., Dalton Trans. 1998, 1729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFemu74%3D&md5=1cc7a6f32e25c4a6e1ceaa039d7d1801CAS |
(b) H. T. Evans, M. T. Pope, Inorg. Chem. 1984, 23, 501.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) P. Le Maguerès, L. Ouahab, D. Golhen, D. Grandjiean, O. Pena, J. C. Jegaden, C. J. Gomez-Garecia, P. Delhaès, Inorg. Chem. 1994, 33, 5180.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Attanasio, M. Bonamicao, V. Fares, P. Imeratori, L. Suber, J. Chem. Soc., Dalton Trans. 1990, 3221.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) (a) R. A. Nyquist, R. O. Kagel, Infrared Spectra of Inorganic Compounds (3800–45 cm–1) 1971 (Academic Press: New York).
(b) S. J. Gilliam, J. O. Jensen, A. Banerjee, D. Zeroka, S. J. Kirkby, C. N. Merrowa, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 425.
| Crossref | GoogleScholarGoogle Scholar |
[22] I. D. Brown, D. Altermatt, Acta Crystallogr. B 1985, 41, 244.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy 1978 (Perkin–Elmer Corp.: Eden Prairie, MI).
[24] A. I. Minyaev, I. A. Denisov, V. E. Soroko, V. A. Konovalov, Zh. Prikl Khim 1986, 59, 339.
| 1:CAS:528:DyaL28XhtlKkurg%3D&md5=b056a362f55607faf57198c619c264deCAS |
[25] (a) Z. G. Han, Y. L. Zhao, J. Peng, Q. Liu, E. B. Wang, Electrochim. Acta 2005, 51, 218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhsLfO&md5=7df6ad2325e9fac3420b956cb172c0fdCAS |
(b) Z. G. Han, Y. L. Zhao, J. Peng, A. X. Tian, Y. H. Feng, Q. Liu, J. Solid State Chem. 2005, 178, 1386.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. G. Han, Y. L. Zhao, J. Peng, H. Y. Ma, Q. Liu, E. B. Wang, N. H. Hu, J. Solid State Chem. 2004, 177, 4325.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) (a) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen, Germany).
(b) (b) G. M. Sheldrick, SHELX-97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen, Germany).