Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH FRONT

How old are the eucalypts? A review of the microfossil and phylogenetic evidence

Mike Macphail A C and Andrew H. Thornhill B
+ Author Affiliations
- Author Affiliations

A Department of Archaeology and Natural History, College of Asia and the Pacific, Australian National University, Canberra, ACT 0200, Australia.

B University and Jepson Herbaria, University of California, Berkeley, CA 94720-2465, USA and Australian Tropical Herbarium, James Cook University, Cairns, Qld 4870, Australia.

C Corresponding author. Email: mike.macphail@anu.edu.au

Australian Journal of Botany 64(8) 579-599 https://doi.org/10.1071/BT16124
Submitted: 12 June 2016  Accepted: 24 October 2016   Published: 25 November 2016

Abstract

Molecular age estimates for the Eucalypteae (family Myrtaceae) suggest that the eucalypts, possibly associated with fire, have been present for ~65 million years. In contrast, macrofossils and fossil pollen attributable to three important eucalypt genera (Angophora, Corymbia and Eucalyptus) in the Eucalypteae date to ~51–53 million years ago (mid-Early Eocene) in Patagonia, eastern Antarctica and south-eastern Australia. At present, there is no fossil evidence to show that eucalypts had evolved before this epoch, i.e. when Australia was part of eastern Gondwana, although this seems probable on the basis of molecular-dated phylogenetic analyses. The primary reason is the absence of macrofossils, whereas the earliest fossil eucalypt-type pollen recorded (Myrtaceidites tenuis) is attributed to Angophora and Corymbia, not Eucalyptus. This pollen type is recorded in Australia and Antarctica but not in New Zealand or South America. The only Myrtaceidites morphospecies found in Upper Cretaceous and Paleocene deposits in Australia is M. parvus, whose affinity lies with multiple extant Myrtaceae groups other than the Eucalypteae. In the present paper, we review current phylogenetic and microfossil databases for the eucalypts and assess this evidence to develop a ‘consensus’ position on the origin and evolution of the eucalypts in the Australian region.

Additional keywords: ancestral state reconstruction, Angophora, Australia, Corymbia, Eucalyptus, evolution, Myrtaceae eucalypt, Myrtaceidites, palynology, palynostratigraphy, palaeobotany, phylogenetics.


References

Alfaro ME, Holder MT (2006) The posterior and prior in Bayesian phylogenetics. Annual Review of Ecology Evolution and Systematics 37, 19–42.
The posterior and prior in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Alley NF (1983) Palynology of selected Cainozoic samples from Tarcoola 1 : 100 000 map sheet. Palaeontological report 1983/76 (unpublished), Geological Survey of South Australia, Adelaide.

Alley NF, Beecroft A (1993) Foraminiferal and palynological evidence from the Pidinga Formation and its bearing on Eocene sea level events and palaeochannel activity, eastern Eucla Basin, South Australia. Memoir of the Association of Australasian Palaeontologists 15, 375–393.

Alley NF, Benbow MC (1989) Late Eocene palynofloras from the Pidinga Formation SADME Ooldea Range 6, eastern Eucla Basin. Geological Survey of South Australia Quarterly Geological Notes 111, 2–12.

Alley NF, Kreig GW, Callen RA (1996) Early Tertiary Eyre Formation, lower Nelly Creek, southern Lake Eyre Basin, Australia: palynological dating of macrofloras and silcrete, and palaeoclimatic interpretations. Australian Journal of Earth Sciences 43, 71–84.
Early Tertiary Eyre Formation, lower Nelly Creek, southern Lake Eyre Basin, Australia: palynological dating of macrofloras and silcrete, and palaeoclimatic interpretations.Crossref | GoogleScholarGoogle Scholar |

Atahan P, Dodson JR, Itzstein-Davey F (2004) A fine-resolution Pliocene pollen and charcoal record from Yallalie, south-western Australia. Journal of Biogeography 31, 199–205.
A fine-resolution Pliocene pollen and charcoal record from Yallalie, south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Barreda V, Palazzesi L (2007) Patagonian vegetation turnover during the Paleogene–Early Neogene: origin of arid-adapted floras. Botanical Review 73, 31–50.
Patagonian vegetation turnover during the Paleogene–Early Neogene: origin of arid-adapted floras.Crossref | GoogleScholarGoogle Scholar |

Bayly MJ (2016) Phylogenetic studies of eucalypts: fossils, morphology, and genomes. Proceedings of the Royal Society of Victoria 128, 12–24.
Phylogenetic studies of eucalypts: fossils, morphology, and genomes.Crossref | GoogleScholarGoogle Scholar |

Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts: Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69, 704–716.
Chloroplast genome analysis of Australian eucalypts: Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1eltLrO&md5=90c14dce769affca69fecb860079507cCAS |

Beeston JW (1994) Tertiary palynology in the Mount Coolon and Riverside areas. Queensland Geology 6, 127–177.

Berger BA, Kriebel R, Spalink DJ, Sytsma KJ (2016) Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95, 116–136.
Divergence times, historical biogeography, and shifts in speciation rates of Myrtales.Crossref | GoogleScholarGoogle Scholar |

Biffin E, Lucas E, Craven L, Ribeiro da Costa I, Harrington M, Crisp M (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany 106, 79–93.
Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsLk%3D&md5=745493d1b0a3d16ca48f310e36bfcfccCAS |

Bint AN (1981) An Early Pliocene pollen assemblage from Lake Tay, south-western Australia and its phytogeographic implications. Australian Journal of Botany 29, 277–291.
An Early Pliocene pollen assemblage from Lake Tay, south-western Australia and its phytogeographic implications.Crossref | GoogleScholarGoogle Scholar |

Blackburn DT, Sluiter IRK (1994) The Oligo-Miocene coal floras of southeastern Australia. In ‘Australian vegetation history: Cretaceous to Recent’. (Ed. RS Hill) pp. 328–367 (Cambridge University Press: Cambridge, UK)

Bond WJ (2015) Fires in the Cenozoic: a late flowering of flammable ecosystems. Frontiers in Plant Science 5, 749
Fires in the Cenozoic: a late flowering of flammable ecosystems.Crossref | GoogleScholarGoogle Scholar |

Brooke BP, Harris PT, Nichol SL, Sexton J, Arthur WC, Haese RR, Heap AD, Hazelwood MC, Radke LC (2012) Living on the edge: waterfront views. In ‘Shaping a nation: a geology of Australia’. (Ed. RS Blewett) pp. 292–293. (Geoscience Australia & ANU E Press: Canberra)

Burrows GE (2002) Epicormic strand structure in Angophora, Eucalyptus and Lophostemon (Myrtaceae): implications for fire resistance and recovery. New Phytologist 153, 111–131.
Epicormic strand structure in Angophora, Eucalyptus and Lophostemon (Myrtaceae): implications for fire resistance and recovery.Crossref | GoogleScholarGoogle Scholar |

Burrows GE (2013) Buds, bushfires and resprouting in the eucalypts. Australian Journal of Botany 61, 331–349.
Buds, bushfires and resprouting in the eucalypts.Crossref | GoogleScholarGoogle Scholar |

Burrows GE, Hornby SK, Waters DA, Bellairs SM, Prior LD, Bowman DMJS (2010) A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome: implications for adaptation to fire. Australian Journal of Botany 58, 493–507.
A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome: implications for adaptation to fire.Crossref | GoogleScholarGoogle Scholar |

Callen RA, Cowley WM 1995 Billa Kalina Basin. In ‘The geology of South Australia 2: Phanerozoic’. (Eds JF Drexel, WV Preiss) pp. 195–198. (Department of Mines and Energy: Adelaide)

Carpenter RJ, Jordan GJ, Hill RS (1994) Banksieaephyllum taylorii (Proteaceae) from the Late Paleocene of New South Wales and its relevance to the origin of Australia’s scleromorphic flora. Australian Systematic Botany 7, 385–392.
Banksieaephyllum taylorii (Proteaceae) from the Late Paleocene of New South Wales and its relevance to the origin of Australia’s scleromorphic flora.Crossref | GoogleScholarGoogle Scholar |

Carpenter RJ, Jordan GJ, Macphail MK, Hill RS (2012) Near tropical Early Eocene terrestrial temperatures at the Austro-Antarctic margin. Geology 40, 267–270.
Near tropical Early Eocene terrestrial temperatures at the Austro-Antarctic margin.Crossref | GoogleScholarGoogle Scholar |

Carpenter RJ, Macphail MK, Jordan GJ, Hill RS (2015) Fossil evidence for open Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia. American Journal of Botany 102, 2092–2107.
Fossil evidence for open Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia.Crossref | GoogleScholarGoogle Scholar |

Cohen BE, Vasconcelos PM, Knesel KM (2007) 40K/39Ar constraints on the timing of Oligocene intraplate volcanism in southeastern Queensland. Australian Journal of Earth Sciences 54, 105–125.
40K/39Ar constraints on the timing of Oligocene intraplate volcanism in southeastern Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1GisbY%3D&md5=43e172fa439c5b3e3ab4c404e9b164f4CAS |

Collao S, Oyarzun R, Plama S, Pineda V (1987) Stratigraphy, palynology and geochemistry of the Lower Eocene coals of Arauco, Chile. International Journal of Coal Geology 7, 195–208.
Stratigraphy, palynology and geochemistry of the Lower Eocene coals of Arauco, Chile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsl2nsL8%3D&md5=a2a431533314c8264a7c977ab4402387CAS |

Contreras L, Pross J, Bijl PK, Koutsodendris A, Raine JI, van de Schootbrugge B, Brinkhuis H (2013) Early to Middle Eocene vegetation dynamics at the Wilkes Land margin (Antarctica). Review of Palaeobotany and Palynology 197, 119–142.
Early to Middle Eocene vegetation dynamics at the Wilkes Land margin (Antarctica).Crossref | GoogleScholarGoogle Scholar |

Cook AG, Jell JS (2013) Paleogene and Neogene. In ‘Geology of Queensland’ (Ed. PA Jell) pp. 577–652. (Geological Survey of Queensland, Department of Natural Resources and Mines: Brisbane)

Cook AG, Rozefelds AC (2015) ‘In search of ancient Queensland.’ (Queensland Museum Network, Queensland Government: Brisbane).

Cookson IC, Pike KM (1954) Some dicotyledonous pollen types from Cainozoic deposits in the Australian region. Australian Journal of Botany 2, 197–219.

Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications 2, 193
Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary.Crossref | GoogleScholarGoogle Scholar |

Davies TJ (2015) Losing history: how extinctions prune features from the tree of life. Philosophical Transactions of the Royal Society B 370, 20140006
Losing history: how extinctions prune features from the tree of life.Crossref | GoogleScholarGoogle Scholar |

Dodson JR, Macphail MK (2004) Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in southwest Australia. Global and Planetary Change 41, 285–307.
Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in southwest Australia.Crossref | GoogleScholarGoogle Scholar |

dos Reis M, Donoghue PCJ, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nature Reviews. Genetics 17, 71–80.
Bayesian molecular clock dating of species divergences in the genomics era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVKrtLrM&md5=3cdbb7613b2a48ea075440b2c5f6449fCAS |

Drinnan AN, Ladiges PY (1989) Corolla and androecium development in some Eudesmia eucalypts (Myrtaceae). Plant Systematics and Evolution 165, 239–254.
Corolla and androecium development in some Eudesmia eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |

Duchêne S, Lanfear R, Ho SYW (2014) The impact of calibration and clock-model choice on molecular estimates of divergence times. Molecular Phylogenetics and Evolution 78, 277–289.
The impact of calibration and clock-model choice on molecular estimates of divergence times.Crossref | GoogleScholarGoogle Scholar |

Foster CB (1982) Illustrations of Early Tertiary (Eocene) plant microfossils from the Yaamba Basin, Queensland. Geological Survey of Queensland Publication 381, 1–32.

Freile C (1972) Estudio palinológico de la Formación Cerro Dorotea (Maastrichtiano-Paleoceno), Provincia de Santa Cruz. Revista del Museo de La Plata (Nueva Serie). Paleontología 6, 39–63.

Fujioka AT, Chappell J (2010) History of Australian aridity: chronology in the history of landscapes. Geological Society of London, Special Publications 346, 121–139.
History of Australian aridity: chronology in the history of landscapes.Crossref | GoogleScholarGoogle Scholar |

Gadek PA, Martin HA (1982) Exine ultrastructure of myrtaceous pollen. Australian Journal of Botany 30, 75–86.
Exine ultrastructure of myrtaceous pollen.Crossref | GoogleScholarGoogle Scholar |

Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, González CC, Wilf P, Cúneo NR (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS One 6, e21084
Oldest known Eucalyptus macrofossils are from South America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1yqtLg%3D&md5=deb49446a2e9d1897f06fbf8d90c1338CAS |

Givnish TJ (2015) Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytologist 207, 297–303.
Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution.Crossref | GoogleScholarGoogle Scholar |

González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr NJ, Laffan SW, Miller JT, Rosauer DF, Faith D.P, Nipperess DA, Kujala H, Linke S, Butt N, Külheim C, Crisp MD, Gruber B (2016) Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change
Phylogenetic approaches reveal biodiversity threats under climate change.Crossref | GoogleScholarGoogle Scholar |

Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) ‘The geologic time scale.’ Available at http://www.sciencedirect.com/science/book/9780444594259 [verified 5 September 2016].

Greenwood DR (1996) Eocene monsoon forests in central Australia? Australian Systematic Botany 9, 95–112.
Eocene monsoon forests in central Australia?Crossref | GoogleScholarGoogle Scholar |

Harris WK (1965) Basal Tertiary microfloras from the Princetown area, Victoria, Australia. Palaeontographica B115, 75–106.

He T, Lamont BB, Downes KS (2011) Banksia born to burn. New Phytologist 191, 184–196.
Banksia born to burn.Crossref | GoogleScholarGoogle Scholar |

Heath TA, Huelsenbeck JP, Stadler T (2014) The fossilized birth–death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences, USA 111, E2957–E2966.
The fossilized birth–death process for coherent calibration of divergence-time estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqtbvL&md5=5053c86ac311f92bb897370fd94495a7CAS |

Heenan PB, McGlone MS (2013) Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic. New Zealand Journal of Ecology 37, 105–113.

Heim JA, Vasconcelos PM, Shuster DL, Farley KA, Broadbent G (2006) Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley province, Australia. Geology 34, 173–176.
Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley province, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWntrzJ&md5=d3b1dafeffaaa9cf0e0fd2c4ba65601fCAS |

Helby R, Partridge AD (1985) Reconnaissance palynological analysis of Jacaranda-1, Bonaparte Basin. Palaeontological report 1985/30, Esso Australia Ltd., Sydney.

Hermsen EJ, Gandolfo MA, Zamaloa MdC (2012) The fossil record of Eucalyptus in Patagonia. American Journal of Botany 99, 1356–1374.
The fossil record of Eucalyptus in Patagonia.Crossref | GoogleScholarGoogle Scholar |

Hill RS (1998) Poor soils and a dry climate: the evolution of the Australian scleromorphic and xeromorphic vegetation. Australian Biologist 11, 26–29.

Hill RS, Brodribb TJ (2001) Macrofossil evidence for the onset of xeromorphy in Australian Casuarinaceae and tribe Banksieae (Proteaceae). Journal of Mediterranean Ecology 2, 127–136.

Hill RS, Beer YK, Hill KE, Maciunas EC, Tarran MA, Wainman CC (2016) Evolution of the eucalypts – an interpretation from the macrofossil record. Australian Journal of Botany 64, 600–608.
Evolution of the eucalypts – an interpretation from the macrofossil record.Crossref | GoogleScholarGoogle Scholar |

Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58, 367–380.
Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=7608f328676dbc46a0de121eae94a794CAS |

Jackson WD (1968) Fire, air, water and earth: an elemental ecology of Tasmania. Proceedings of the Ecological Society of Australia 3, 9–16.

Jansonius J, Hills LV (1976) ‘Genera file of fossil spores. Special publication, cards 1–3287.’ (Department of Geology, University of Calgary: Canada)

Jansonius J, Hills LV (1985) ‘Genera file of fossil spores. Special publication, cards 4190–4360.’ (Department of Geology, University of Calgary: Canada)

Kemp EM (1976) Early Tertiary pollen from Napperby, central Australia. BMR Journal of Australian Geology and Geophysics 1, 109–114.

Kring DA (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255, 4–21.
The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Lange RT (1978) Carpological evidence for fossil Eucalyptus and other Leptospermeae (subfamily Leptospermoideae of Myrtaceae) from a Tertiary deposit in the South Australian arid zone. Australian Journal of Botany 26, 221–233.
Carpological evidence for fossil Eucalyptus and other Leptospermeae (subfamily Leptospermoideae of Myrtaceae) from a Tertiary deposit in the South Australian arid zone.Crossref | GoogleScholarGoogle Scholar |

Lawver LA, Gahangan LM, Dalziel WD (2011) A different look at gateways: Drake Passage and Australia/Antarctica. In ‘Tectonic, climatic, and cryospheric evolution of the Antarctic peninsula’. (Eds JB Anderson, JS Wellner) pp. 5–23. (American Geophysical Union: Washington, DC)

Lipscomb D (1998) ‘Basics of cladistic analysis.’ (George Washington University: Washington, DC)

Macphail MK (1991) Cooking up our data. Palynological and Palaeobotanical Society of Australasia Newsletter 22, 5–8.

Macphail MK (1994) Impact of the K/T event on the southeast Australian flora and vegetation: mass extinction, niche disruption or nil? Palaeoaustral 1, 9–13.

Macphail MK (1996) A provisional palynostratigraphic framework for Tertiary organic facies in the Burt Plain, Hale, Ngalia, Santa Teresa, Ti-Tree and Waite Basins, Northern Territory. Australian Geological Survey Organisation Record 1996, 1–21.

Macphail MK (1997a) Late Neogene climates in Australia: fossil spore and pollen-based estimates in retrospect and prospect. Australian Journal of Botany 45, 425–464.
Late Neogene climates in Australia: fossil spore and pollen-based estimates in retrospect and prospect.Crossref | GoogleScholarGoogle Scholar |

Macphail MK (1997b) Palynostratigraphy of Late Cretaceous–Tertiary basins of the Alice Springs district, Northern Territory. Australian Geological Survey Organisation Record 97, 1–27.

Macphail MK (1999) Palynostratigraphy of the Murray Basin, inland southeastern Australia. Palynology 23, 197–240.
Palynostratigraphy of the Murray Basin, inland southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Macphail MK (2002) ‘ODP leg 189 initial results: terrestrial plant microfossils.’ (Ocean Drilling Program/Australian Geological Survey Organisation: Canberra)

Macphail MK (2007) ‘Australian palaeoclimates Cretaceous to Tertiary. A review of palaeobotanical and related evidence to the year 2000.’ CRC–LEME open file report 151/special volume. (Cooperative Research Centre for Landscape Environments and Mineral Exploration: Bentley, Western Australia).

Macphail MK (2010) Palynostratigraphic dates from sonic coreholes, BHMAR Project, Lake Menindee area, Broken Hill, far western New South Wales. Palynostratigraphic report to Geoscience Australia (unpublished). (Geoscience Australia: Canberra).

Macphail MK, Cantrill D (2006) Age and implications of the Forest Bed, Falkland Islands, southwest Atlantic Ocean: evidence from fossil pollen and spores. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 602–629.
Age and implications of the Forest Bed, Falkland Islands, southwest Atlantic Ocean: evidence from fossil pollen and spores.Crossref | GoogleScholarGoogle Scholar |

Macphail M, Gibson D (2014) Testing the Gippsland Basin zonation in northern Australia: palynostratigraphical analysis of a 23 Ma 40Ar/39Ar dated claystone from Toowoomba, southeast Queensland. Palynology 38, 117–128.
Testing the Gippsland Basin zonation in northern Australia: palynostratigraphical analysis of a 23 Ma 40Ar/39Ar dated claystone from Toowoomba, southeast Queensland.Crossref | GoogleScholarGoogle Scholar |

Macphail MK, Stone M (2004) Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia. Australian Journal of Earth Sciences 51, 497–520.
Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Macphail MK, Truswell EM (1989) Palynostratigraphy of the central west Murray Basin. BMR Journal of Australian Geology and Geophysics 11, 301–331.

Macphail MK, Truswell EM (1993) Palynostratigraphy of the Bookpurnong beds and related late Miocene–Early Pliocene facies in the central west Murray Basin, part 2: spores and pollen. AGSO Journal of Australian Geology & Geophysics 14, 383–409.

Macphail MK, Alley N, Truswell EM, Sluiter IR (1994). Early Tertiary vegetation: evidence from pollen and spores. In ‘Australian vegetation history: Cretaceous to Recent’. (Ed. RS Hill) pp. 189–261 (Cambridge University Press: Cambridge, UK)

Macphail MK, Hill RS, Partridge AD, Jordan GJ (2014a) Geo-botany of the Cretaceous to Neogene. In ‘Geological evolution of Tasmania’. (Eds KD Corbett, PG Quilty, CR Calver) pp. 495–507. Geological Society of Australia special publication 24. (Geological Society of Australia, Tasmania Division)

Macphail MK, Hill RS, Carpenter RJ, McKellar JL (2014b) Cenozoic oil-shale deposits in southeastern-central Queensland: palynostratigraphic age determinations and correlations for the Biloela Formation (Biloela Basin) in GSQ Monto 5. Queensland Geological Record 2014, 1–14.

Martin HA (1978) Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa 2, 181–202.
Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen.Crossref | GoogleScholarGoogle Scholar |

Martin HA (1988) Stratigraphic palynology of the Lake Menindee region, Northwest Murray Basin, New South Wales. Journal and Proceedings of the Royal Society of New South Wales 121, 1–9.

Martin HA (1990) The palynology of the Namba Formation in the Wooltana-1 bore, Callabonna Basin (Lake Frome), South Australia, and its relevance to Miocene grasslands in central Australia. Alcheringa 14, 247–255.
The palynology of the Namba Formation in the Wooltana-1 bore, Callabonna Basin (Lake Frome), South Australia, and its relevance to Miocene grasslands in central Australia.Crossref | GoogleScholarGoogle Scholar |

Martin HA, Gadek PA (1988) Identification of Eucalyptus spathulata pollen and its presence in the fossil record. Memoirs of the Association of Australasian Palaeontologists 5, 311–327.

Martin HA, Worrall L, Chalson J (1987) The first occurrence of the Paleocene Lygistepollenites balmei Zone in the Eastern Highlands region, New South Wales. Australian Journal of Earth Sciences 34, 359–365.
The first occurrence of the Paleocene Lygistepollenites balmei Zone in the Eastern Highlands region, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Mildenhall DC (1976) Exotic pollen rain on the Chatham Islands during the Late Pleistocene. New Zealand Journal of Geology and Geophysics 19, 327–333.
Exotic pollen rain on the Chatham Islands during the Late Pleistocene.Crossref | GoogleScholarGoogle Scholar |

Mildenhall DC (1980) New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeography, Palaeoclimatology, Palaeoecology 31, 197–233.
New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution.Crossref | GoogleScholarGoogle Scholar |

Mildenhall DC, Pocknall DT (1989) Miocene–Pleistocene spores and pollen from central Otago, South Island, New Zealand. New Zealand Geological Survey Paleontological Bulletin 59, 1–128.

Milne L (1988) Palynology of a late Eocene lignitic sequence from the western margin of the Eucla Basin, Western Australia. Memoirs of the Association of Australasian Palaeontologists 5, 285–310.

Monteil E, Macphail MK, Partridge AD (2009) Results of the palynostratigraphic and palaeoenvironmental analyses of 281 dredge and core samples from the Great Australian Bight (GAB), southern margin, Australia. In ‘Bight Basin geological sampling and seepage survey’. (Eds J Totterdell, C Mitchell) Appendix APP3. RV Southern Surveyor survey SS01/2007/Geoscience Australia record 2009/24. (Geoscience Australia: Canberra).

Morris R (2012) ‘Times Anvil: England: archaeology and the imagination.’ (Weidenfeld & Nicolson: London)

Muller J (1981) Fossil pollen records of extant angiosperms. Botanical Review 47, 1–142.
Fossil pollen records of extant angiosperms.Crossref | GoogleScholarGoogle Scholar |

Náñez C, Quattrochio ME, Ruiz L (2009) Palinología y micropaleontología de las Formaciones San Julián y Monte León (Oligoceno–Mioceno temprano) en el subsuelo de cabo Curioso, provincia de Santa Cruz, Argentina. Ameghiniana 46, 669–693.

Nyberg B, Howell JA (2015) Is the present the key to the past? A global characterization of modern sedimentary basins. Geology 43, 643–646.
Is the present the key to the past? A global characterization of modern sedimentary basins.Crossref | GoogleScholarGoogle Scholar |

Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments 66, 498–532.
Paleoenvironmental evolution of southern South America during the Cenozoic.Crossref | GoogleScholarGoogle Scholar |

Partridge AD (1999) Late Cretaceous to Tertiary geological evolution of the Gippsland Basin, Victoria. PhD Thesis, Latrobe University, Melbourne.

Partridge AD (2006) Late Cretaceous–Cenozoic palynology zonations in the Gippsland Basin. In ‘Australian Mesozoic and Cenozoic palynology zonations: updated to the 2004 geologic time scale’. (Coord. E Monteil) Geoscience Australia record 2006/23. (Geoscience Australia: Canberra).

Pickett EJ, Harrison SP, Hope G, Harle K, Dodson JR, Peter Kershaw A, Colin Prentice I, Backhouse J, Colhoun EA, D’Costa D, Flenley J, Grindrod J, Haberle S, Hassell C, Kenyon C, Macphail M, Martin H, Martin AH, McKenzie M, Newsome JC, Penny D, Powell J, Ian Raine J, Southern W, Stevenson J, Sutra J-P, Thomas I, van der Kaars S, Ward J (2004) Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18 000 14C yr BP. Journal of Biogeography 31, 1381–1444.
Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18 000 14C yr BP.Crossref | GoogleScholarGoogle Scholar |

Pike KM (1956) Pollen morphology of Myrtaceae from the South-west Pacific area. Australian Journal of Botany 4, 13–53.
Pollen morphology of Myrtaceae from the South-west Pacific area.Crossref | GoogleScholarGoogle Scholar |

Pole MS (1993) Early–Middle Miocene flora of the Manuherikia Group, New Zealand. 7. Myrtaceae, including Eucalyptus. Journal of the Royal Society of New Zealand 23, 313–328.
Early–Middle Miocene flora of the Manuherikia Group, New Zealand. 7. Myrtaceae, including Eucalyptus.Crossref | GoogleScholarGoogle Scholar |

Pole MS (1994) An Eocene macroflora from the Taratu Formation at Livingstone, north Otago, New Zealand. Australian Journal of Botany 42, 341–367.
An Eocene macroflora from the Taratu Formation at Livingstone, north Otago, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Pole MS (2014) Eucalyptus fossils in New Zealand: the thin end of the wedge. Available at: http://www.mikepole.com/2014/09/22/eucalyptus-fossils-in-new-zealand-the-thin-end-of-the-wedge/ [verified 7 November 2016].

Pole MS, Macphail MK (1996) Eocene Nypa from Regatta Point, Tasmania. Review of Palaeobotany and Palynology 92, 55–67.
Eocene Nypa from Regatta Point, Tasmania.Crossref | GoogleScholarGoogle Scholar |

Poole I, Mennega AMW, Cantrill DJ (2003) Valdivian ecosystems in the Late Cretaceous and Early Tertiary of Antarctica: further evidence from myrtaceous and eucryphiaceous fossil wood. Review of Palaeobotany and Palynology 124, 9–27.
Valdivian ecosystems in the Late Cretaceous and Early Tertiary of Antarctica: further evidence from myrtaceous and eucryphiaceous fossil wood.Crossref | GoogleScholarGoogle Scholar |

Prior LD, Williamson GJ, Bowman DMJS (2016) Impact of high-severity fire in a Tasmanian dry eucalypt forest. Australian Journal of Botany 64, 193–205.

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143, 1–81.
Glossary of pollen and spore terminology.Crossref | GoogleScholarGoogle Scholar |

Raine JI (1984) Outline of a palynological zonation of Cretaceous to Paleogene terrestrial sediments in West Coast Region, South Island, New Zealand. New Zealand Geological Survey Report 109, 1–82.

Raine JI, Mildenhall DC, Kennedy EM (2011) ‘New Zealand fossil spores and pollen: an illustrated catalogue.’ 4th edn. GNS Science Miscellaneous Series 4. Available at http://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm [verified 19 September 2016]

Rangel TF, Colwell RK, Graves GR, Fučíková K, Rahbek C, Diniz-Filho JAF (2015) Phylogenetic uncertainty revisited: Implications for ecological analyses. Evolution 69, 1301–1312.
Phylogenetic uncertainty revisited: Implications for ecological analyses.Crossref | GoogleScholarGoogle Scholar |

Richards MA, Alvarez W, Self S, Karlstrom L, Renne PR, Manga M, Sprain CJ, Smit J, Vanderkluysen L, Gibson SA (2015) Triggering of the largest Deccan eruptions by the Chicxulub impact. Geological Society of America Bulletin 127, 1507–1520.
Triggering of the largest Deccan eruptions by the Chicxulub impact.Crossref | GoogleScholarGoogle Scholar |

Rozefelds AC (1996) Eucalyptus phylogeny and history: a brief summary. Tasforests 8, 15–18.

Ruiz LC, Quattrochio M (1997) Estudio palinológico de la formación Pedr Luro (?Maastrichtiano–Paleoceno), en la Cuenca del Colorado, República Argentina. Revista Espánola de Micropaleontogia 29, 115–137.

Salas MR (1983) Long-distance pollen transport over the southern Tasman Sea: evidence from Macquarie Island. New Zealand Journal of Botany 21, 285–292.
Long-distance pollen transport over the southern Tasman Sea: evidence from Macquarie Island.Crossref | GoogleScholarGoogle Scholar |

Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302.
r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlCntrw%3D&md5=96576fe802b28e6cd8c4f585fe28a52aCAS |

Scott AC (2000) The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 281–329.
The Pre-Quaternary history of fire.Crossref | GoogleScholarGoogle Scholar |

Segovia RA, Armesto JJ (2015) The Gondwanan legacy in South American biogeography. Journal of Biogeography 42, 209–217.
The Gondwanan legacy in South American biogeography.Crossref | GoogleScholarGoogle Scholar |

Selkin PA, Strömberg CAE, Dunn R, Kohn MJ, Carlini AA, Davies-Vollum KS, Madden RH (2015) Climate, dust, and fire across the Eocene–Oligocene transition, Patagonia. Geology 43, 567–570.
Climate, dust, and fire across the Eocene–Oligocene transition, Patagonia.Crossref | GoogleScholarGoogle Scholar |

Shukla A, Mehrotra RC, Tyagi A (2012) The oldest fossil of Eucalyptus from the Late Maastrichtian–Danian of India and the theory of its Gondwanic origin. Current Science 103, 74–80.

Sluiter IR (1991) Early Tertiary vegetation and climates, Lake Eyre region, northeastern South Australia. In ‘The Cainozoic in Australia: a re-appraisal of the evidence’. (Eds MAJ Williams, P de Deckker, AP Kershaw) pp. 99–118. Geological Society of Australia special publication 18. (Geological Society of Australia: Sydney)

Sluiter I, Blackburn DT, Holdgate G (2016) Fire and Late Oligocene to Mid-Miocene peat mega-swamps of south-eastern Australia: a floristic and palaeoclimatic interpretation. Australian Journal of Botany 64, 609–625.
Fire and Late Oligocene to Mid-Miocene peat mega-swamps of south-eastern Australia: a floristic and palaeoclimatic interpretation.Crossref | GoogleScholarGoogle Scholar |

Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, USA 107, 5897–5902.
An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kktro%3D&md5=8c253306b7da2906678031d15e3bb1daCAS |

Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular Phylogenetics and Evolution 59, 206–224.
Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping.Crossref | GoogleScholarGoogle Scholar |

Stover LE, Evans PR (1973) Upper Cretaceous–Eocene spore-pollen zonations, offshore Gippsland Basin. Special Publication of the Geological Society of Australia 4, 55–72.

Stover LE, Partridge AD (1973) Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proceedings of the Royal Society of Victoria 85, 237–286.

Stover LE, Partridge AD (1982) Eocene spore–pollen from the Werillup Formation, Western Australia. Palynology 6, 69–95.

Struckmeyer HIM, Totterdell JM (1990) ‘Australia: evolution of a continent.’ pp. 1–96. (Australian Government Publishing Service: Canberra)

Sutherland FL, Graham IT, Meffre S, Zwingmann H, Pogson RE (2012) Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes. Australian Journal of Earth Sciences 59, 983–1005.
Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsValtL3M&md5=720dbc1a6b64ddb8662b90c3b4e027dbCAS |

Sweet AR (1986) The Cretaceous–Tertiary boundary in the central Alberta foothills. II: Miospore and pollen taxonomy. Canadian Journal of Earth Sciences 23, 1375–1388.
The Cretaceous–Tertiary boundary in the central Alberta foothills. II: Miospore and pollen taxonomy.Crossref | GoogleScholarGoogle Scholar |

Swofford DL (2002) ‘PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.’ (Sinauer Associates: Sunderland, MA)

Sytsma KJ, Litt A, Zjhra M, Pires JC, Nepokroeff M, Conti E, Walker J, Wilson P (2004) Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. International Journal of Plant Sciences 165, S85–S105.
Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFOhurk%3D&md5=ab2af896803a5301364828d3d2dfaf58CAS |

Taylor G, Truswell EM, McQueen KG, Brown MC (1990) Early Tertiary palaeogeography, landform evolution and palaeoclimates of the southern Monaro, NSW, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 78, 109–134.
Early Tertiary palaeogeography, landform evolution and palaeoclimates of the southern Monaro, NSW, Australia.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Crisp MD (2012) Phylogenetic assessment of pollen characters in Myrtaceae. Australian Systematic Botany 25, 171–187.
Phylogenetic assessment of pollen characters in Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Macphail MK (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: a review of fossil Myrtaceidites species. Review of Palaeobotany and Palynology 176–177, 1–23.
Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: a review of fossil Myrtaceidites species.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Popple LW, Carter RJ, Ho SYW, Crisp MD (2012a) Are pollen fossils useful for calibrating relaxed molecular-clock dating of phylogenies: a comparative study using Myrtaceae. Molecular Phylogenetics and Evolution 63, 15–27.
Are pollen fossils useful for calibrating relaxed molecular-clock dating of phylogenies: a comparative study using Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Hope GS, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae. Australian Journal of Botany 60, 165–199.
Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93, 29–43.
Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny.Crossref | GoogleScholarGoogle Scholar |

Totterdell J, Mitchell C (2009) Bight Basin geological sampling and seepage survey: RV Southern Surveyor survey SS01/2007. Geoscience Australia Record 2009, 1–128.

Traverse A (1988) ‘Paleopalynology.’ (Unwin-Hymen: Boston, MA)

Truswell EM (1983) Recycled Cretaceous and Tertiary pollen and spores in Antarctic marine sediments: a catalogue. Palaeontographica Abteilung. B 186, 121–174.

Truswell EM (1987) Early Tertiary sediments from the Edmund 1 : 250 000 sheet area, Western Australia. BMR Professional Opinion 87, 1–4.

Truswell EM (1997) Palynomorph assemblages from marine Eocene sediments on the west Tasmanian continental margin and the South Tasman Rise. Australian Journal of Earth Sciences 44, 633–654.
Palynomorph assemblages from marine Eocene sediments on the west Tasmanian continental margin and the South Tasman Rise.Crossref | GoogleScholarGoogle Scholar |

Truswell EM, Macphail MK (2009) Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctica say? Australian Systematic Botany 22, 57–106.
Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctica say?Crossref | GoogleScholarGoogle Scholar |

Vajda V, McLoughlin S (2007) Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary: a tool for unraveling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology 144, 99–112.
Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary: a tool for unraveling the causes of the end-Permian mass-extinction.Crossref | GoogleScholarGoogle Scholar |

Veevers JJ, Powell CMcA, Roots SR (1991) Review of seafloor spreading around Australia. 1. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences 38, 373–389.
Review of seafloor spreading around Australia. 1. Synthesis of the patterns of spreading.Crossref | GoogleScholarGoogle Scholar |

Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies JT, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13, 1310–1324.
Niche conservatism as an emerging principle in ecology and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Wilf P, Escapa IH (2016) Molecular dates require geological testing. New Phytologist 209, 1359
Molecular dates require geological testing.Crossref | GoogleScholarGoogle Scholar |

Wilf P, Cuneo NR, Escapa IH, Pol D, Woodburne MO (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences 41, 561–603.
Splendid and seldom isolated: the paleobiogeography of Patagonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SiurrL&md5=8f66cd118bc04a2171162b6b9cfc0eb1CAS |

Wilson PG, O’Brien MM, Gadek PA, Quinn CJ (2001) Myrtaceae revisited: a reassessment of infrafamilial groups. American Journal of Botany 88, 2013–2025.
Myrtaceae revisited: a reassessment of infrafamilial groups.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mngt1aiuw%3D%3D&md5=6c9a5739efbcaa5e83422a332374c320CAS |

Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |

Wood GR (1986) Late Oligocene to Early Miocene palynomorphs from GSQ Sandy Cape 1-3R. Geological Survey of Queensland Publication 387, 1–27.

Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In ‘Evolving genes and proteins’. (Eds V Bryson, HJ Vogel) pp. 97–166. (Academic Press: New York)