Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Resupinate floral dimorphy in Chamaecrista nictitans (L.) Moench (Fabaceae-Caesalpinioideae)

Natan Messias Almeida A B , Vinicius Messas Cotarelli C , Thatiany Teixeira Bezerra D , Ana Virgínia Leite E , Reinaldo Rodrigo Novo A , Cibele Cardoso Castro https://orcid.org/0000-0002-7862-2155 A F * and Isabel Cristina Machado D
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Biodiversidade, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, 51280-400, Recife, PE, Brazil.

B Universidade Estadual de Alagoas, Rodovia AL 105, s/n, Graciliano Ramos, 57600-005, Palmeira dos Índios, AL, Brazil.

C Universidade Federal do Vale do São Francisco, Rodovia BR 407, 12 Lote 543, Projeto de Irrigação Nilo Coelho, s/n, C1, 56300-000, Petrolina, PE, Brazil.

D Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, 50670-901, Recife, PE, Brazil.

E Departamento de Biologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, 51280-400, Recife, PE, Brazil.

F Universidade Federal do Agreste de Pernambuco, Avenida Bom Pastor, s/n, 55292-272, Garanhuns, PE. Brazil.

* Correspondence to: cibele.castro@ufape.edu.br

Handling Editor: Dick Williams

Australian Journal of Botany 72, BT23051 https://doi.org/10.1071/BT23051
Submitted: 13 October 2023  Accepted: 11 September 2024  Published: 4 October 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Resupination is the movement of developing buds that leads to a vertical inversion of the flowers at an angle of 180°. Chamaecrista nictitans exhibits two anther sizes, and nonresupinate and resupinate flowers in the same individual, which is known as monomorphic resupinate dimorphy.

Aims

We aimed to investigate the influence of monomorphic resupinate dimorphy upon pollen deposition on pollinators, capture by the stigma and on plant reproduction, using three populations of C. nictitans from NE Brazil as a model.

Methods

We assessed the floral biology, the proportion of nonresupinate and resupinate flowers in the populations, dynamics of pollen transfer between floral morphs, and the plant’s reproductive system.

Key results

All flowers have two anther sizes with similar pollen viability. The proportion of nonresupinate:resupinate flowers was 3:1 in all populations. The bee Florilegus (Euflorilegus) sp. was the only pollinator observed and had pollen of both flower morphs deposited on the underside part of the thorax and abdomen. The stigma of nonresupinate flowers received pollen from the pollinators’ underside of the abdomen, whereas the stigma of resupinate flowers received pollen from the pollinators’ underside of the thorax. The species is self-compatible but does not set fruits by spontaneous self-pollination. Therefore, natural fruit set had resulted from both intramorph- and intermorph-pollination in the same or in different individuals.

Conclusions

Both flower types have a similar pattern of pollen deposition on the pollinator’s body (underside of the abdomen and thorax) and only differ in relation to areas of pollen capture by the stigma (underside of the abdomen or underside of thorax).

Implications

The monomorphic resupinate dimorphy observed here improves the area of pollen deposition by the anthers on pollinator’s body and makes the capture of pollen by stigma sectored in the different floral types, similar to what is observed in other species presenting floral polymorphisms.

Keywords: Cassiinae, enantiostyly, floral polymorphism, mating system, pollination, reciprocal herkogamy.

References

Almeida NM, Castro CC (2019) Enantiostyly in angiosperms. In ‘Asymmetry in plants: biology of handedness’. (Eds B Bahadur, KV Krishnamurthy, M Ghose, S John Adams) p. 319. (CRC Press)

Almeida EBD, Jr, Olivo MA, Araújo EDL, Zickel CS (2009) Caracterização da vegetação de restinga da RPPN de Maracaípe, PE, Brasil, com base na fisionomia, flora, nutrientes do solo e lençol freático. Acta Botanica Brasilica 23, 36-48.
| Crossref | Google Scholar |

Almeida NM, Castro CC, Lima Leite AV, Novo RR, Machado IC (2013a) Enantiostyly in Chamaecrista ramosa (Fabaceae-Caesalpinioideae): floral morphology, pollen transfer dynamics and breeding system. Plant Biology 15, 369-375.
| Crossref | Google Scholar | PubMed |

Almeida NM, Castro CC, Leite AV, Novo RR, Machado IC (2013b) Floral polymorphism in Chamaecrista flexuosa (Fabaceae-Caesalpinioideae): a possible case of atypical enantiostyly? Annals of Botany 112, 1117-1123.
| Crossref | Google Scholar | PubMed |

Almeida NM, Cotarelli VM, Souza DP, Novo RR, Siqueira Filho JA, Oliveira PE, Castro CC (2015a) Enantiostylous types of Cassiinae species (Fabaceae-Caesalpinioideae). Plant Biology 17, 740-745.
| Crossref | Google Scholar | PubMed |

Almeida NM, Bezerra TT, Oliveira CRS, Novo RR, Siqueira-Filho JA, Oliveira PE, Castro CC (2015b) Breeding systems of enantiostylous Cassiinae species (Fabaceae, Caesalpinioideae). Flora 215, 9-15.
| Crossref | Google Scholar |

Amorim T, Marazzi B, Soares AA, Forni-Martins ER, Muniz CR, Westerkamp C (2017) Ricochet pollination in Senna (Fabaceae) – petals deflect pollen jets and promote division of labour among flower structures. Plant Biology 19, 951-962.
| Crossref | Google Scholar | PubMed |

Arceo-Gómez G, Martínez ML, Parra-Tabla V, García-Franco JG (2011) Anther and stigma morphology in mirror-image flowers of Chamaecrista chamaecristoides (Fabaceae): implications for buzz pollination. Plant Biology 13, 19-24.
| Crossref | Google Scholar | PubMed |

Barrett SCH (2002) The evolution of plant sexual diversity. Nature Reviews Genetics 3, 274-284.
| Crossref | Google Scholar | PubMed |

Barrett SCH (1992) Heterostylous genetic polymorphisms: model systems for evolutionary analysis. In ‘Evolution and function of heterostyly’. (Ed. SCH Barrett) pp. 1–29. (Springer: Berlin, Germany) doi:10.1007/978-3-642-86656-2_1

Buchmann SL (1983) Buzz pollination in angiosperms. In ‘Handbook of experimental pollination’. (Eds CE Jones, RJ Little) pp. 73–113. (Van Nostrand Reinhold: New York, USA)

Carvalho DA, Oliveira PE (2003) Biologia reprodutiva e polinização de Senna sylvestris (Vell.) H.S. Irwin and Barneby (Leguminosae, Caesalpinioideae). Revista Brasileira de Botânica 26, 319-328 [In Portuguese].
| Google Scholar |

Conceição AS, Queiroz LP, Borba EL (2009) Natural hybrids in Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae-Caesalpinioideae): genetic and morphological evidence. Plant Systematic and Evolution 271, 19-27.
| Crossref | Google Scholar |

Coutinho RQ, Limma MF, Neto JBS, Silva EP (1998) Características climáticas, geológicas, geomorfológicas da Reserva Ecológica de Dois Irmãos. In ‘Reserva Ecológica de Dois Irmãos: Estudos em um remanescente de Mata Atlântica em área urbana’. (Eds IC Machado, AV Lopes, KC Porto) pp. 21–50. (Secretaria de Ciência, Tecnologia e Meio Ambiente/Editora Universitária-Universidade Federal de Pernambuco: Recife) [In Portuguese]

Cunha NL, Barrett SCH (2019) Architectural constraints, male fertility variation and biased floral morph ratios in tristylous populations. Heredity 123, 694-706.
| Crossref | Google Scholar | PubMed |

Dafni A, Kevan PG, Husband BC (2005) ‘Practical pollination biology.’ (Enviroquest: Cambridge, UK)

Dias CTV, Kiill LHP (2007) Ecologia da polinização de Raphiodon echinus (Nees & Mart.) Schauer (Lamiaceae) em Petrolina, PE, Brasil. Acta Botanica. Brasílica 21, 977-982 [In Portuguese].
| Google Scholar |

Gibbs PE (2017) Head over heels about floral polymorphism: a novel floral dimorphism based on resupination. Plant Ecology & Diversity 10, 1-3.
| Crossref | Google Scholar |

Gottsberger G, Silberbauer-Gottsberger I (1988) Evolution of flower structures and pollination in Neotropical Cassiinae (Caesalpiniaceae) species. Phyton 28, 293-320.
| Google Scholar |

Harley RM, Giulietti AM, Abreu IS, Bitencourt C, de Oliveira FF, Endress PK (2017) Resupinate dimorphy, a novel pollination strategy in two-lipped flowers of Eplingiella (Lamiaceae). Acta Botanica Brasilica 31, 102-107.
| Crossref | Google Scholar |

Irwin HS, Barneby RC (1976) Notes on the generic status of Chamaecrista Moench (Leguminosae: Caesalpinioideae). Brittonia 28, 28-36.
| Crossref | Google Scholar |

Jander R (1976) Grooming and pollen manipulation in bees (Apoidea): the nature and evolution of movements involving the foreleg. Physiological Entomology 1, 179-194.
| Crossref | Google Scholar |

Jesson LK, Barrett SCH (2002) Solving the puzzle of mirror-image flowers. Nature 417, 707.
| Crossref | Google Scholar | PubMed |

Kearns CA, Inouye DW (1993) ‘Techniques for pollination biologists.’ (University of Colorado Press: Colorado, USA)

Köppen W (1948) ‘Climatologia: com un estudio de los climas de la tierra.’ (Fondo de Cultura Económica: Buenos Aires) [In Portuguese]

Lavin M, Wojciechowski MF, Gasson P, Hughes C, Wheeler E (2003) Phylogeny of robinioid legumes (Fabaceae) revisited: Coursetia and Gliricidia recircumscribed, and a biogeographical appraisal of the Caribbean endemics. Systematic Botany 28(2), 387-409.
| Crossref | Google Scholar |

Pauw A (2005) Inversostyly: a new stylar polymorphism in an oil-secreting plant, Hemimeris racemosa (Scrophulariaceae). American Journal of Botany 92, 1878-1886.
| Crossref | Google Scholar | PubMed |

Peach K, Mazer SJ (2019) Heteranthery in Clarkia: pollen performance of dimorphic anthers contradicts expectations. American Journal of Botany 106, 598-603.
| Crossref | Google Scholar | PubMed |

Pérez-Escobar OA, Blanco MA (2014) Rediscovery of Malaxis nana (Orchidaceae: Malaxideae) in Costa Rica, with an updated description. Lankesteriana 14, 109-114.
| Google Scholar |

Rando JG, Pirani JR (2011) Padrões de distribuição geográfica das espécies de Chamaecrista sect. Chamaecrista ser. Coriaceae (Benth.) H.S. Irwin & Barneby, Leguminosae – Caesalpinioideae. Revista Brasileira de Botânica 34, 499-513.
| Crossref | Google Scholar |

Richards JH, Koptur S (1993) Floral variation and distyly in Guettarda scabra (Rubiaceae). American Journal of Botany 80, 31-40.
| Crossref | Google Scholar |

Tang LL, Huang SQ (2005) Variation in daily floral display and the potential for geitonogamous pollination in two monomorphic enantiostylous Monochoria species. Plant Systematics and Evolution 253, 201-207.
| Crossref | Google Scholar |

Vallejo-Marín M, Manson JS, Thomson JD, Barrett SCH (2009) Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. Journal of Evolutionary Biology 22, 828-839.
| Crossref | Google Scholar | PubMed |

Vogel S (1978) Evolutionary shifts from reward to deception in pollen flowers. In ‘The pollination of flowers by insects’. Linnean Society Symposium Series. vol. 6. (Ed. AJ Richards) pp. 89–96. (Academic Press for the Linnean Society of London)

Weaver N, Weihing RM (1960) Pollination of several clovers by honeybees. Agronomy Journal 52, 183-185.
| Crossref | Google Scholar |

Weberling F (1992) ‘Morphology of flowers and inflorescences.’ (Cambridge University Press: Cambridge, UK)

Westerkamp C (2004) Ricochet pollination in cassias – and how bees explain enantiostyly. In ‘Solitary bees: conservation, rearing and management for pollination’. (Eds BM Freitas, JOP Pereira) pp. 225–230. (Imprensa Universitária: Fortaleza, Brazil)