Traits vary differently across a lowland forest–sand dune gradient in two common trees of the Amazon restinga coast
Luane G. B. Rebelo A * , Mateus C. Silva B , Handria J. A. da Silva C , Ely Simone C. Gurgel C , Beatriz V. Barbosa A and Grazielle S. Teodoro A *A
B
C
Abstract
Intraspecific trait variation is a key feature that enables species to occur in heterogeneous landscapes. We studied Clusia grandiflora and Anacardium occidentale traits over a forest–dune gradient on the Brazilian Amazon coast (restinga). C. grandiflora showed a drought-avoidance strategy, storing water in its leaves, whereas A. occidentale showed conservative resource use in leaves, evidenced by its high dry-matter content and acquisitive resource in wood, showing lower wood density. Only A. occidentale changed its trait values through the forest–dune gradient, showing more conservative leaves in dunes and shrublands, despite a lower wood density than in forest. Leaf and wood traits are likely to be decoupled among Amazon coastal trees and their responses to environmental gradients are species-specific.
Keywords: ecological strategies, environmental gradients, functional traits, intraspecific variation, leaf traits, plasticity, restinga, wood traits.
References
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische zeitschrift 22(6), 711-728.
| Crossref | Google Scholar |
Amaral DDd, Prost MT, Bastos MdNDC, Costa Neto SV, Santos JUMd (2008) Restingas on the Amazon coast, states of Pará and Amapá, Brazil. Bulletin of the Paraense Museum Emílio Goeldi – Natual Sciences 3, 35-67.
| Crossref | Google Scholar |
Araujo da Costa HdJ, Gurgel ESC, Amaral DDd, Vasconcelos LV, Rebelo LGB, Teodoro GS (2020) CSR ecological strategies, functional traits and trade-offs of woody species in Amazon sandplain forest. Flora 273, 151710.
| Crossref | Google Scholar |
Araújo I, Marimon BS, Scalon MC, Fauset S, Marimon Junior BH, Tiwari R, Galbraith DR, Gloor MU (2021) Trees at the Amazonia–Cerrado transition are approaching high temperature thresholds. Environmental Research Letters 16, 034047.
| Crossref | Google Scholar |
Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach A-M, Hérault B, Patiño S, Roggy J-C, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13, 1338-1347.
| Crossref | Google Scholar | PubMed |
Bastos MdNdC, Lobato LCB (1996) Estudos fitossociológicos em áreas de bosque de mangue na praia do Crispim e Ilha de Algodoal – Pará. Boletim Do Museu Paraense Emílio Goeldi, Série Ciências da Terra 8, 157-167 [In Portuguese with English abstract].
| Google Scholar |
Bastos MNC, Rosário CS, Lobato LCB (1995) Caracterização Fitofisionômica da Restinga de Algodoal Maracanã, Pará, Brasil. Boletim do Museu Paraense Emílio Goeldi 11(2), 173-197 Available at http://repositorio.museu-goeldi.br/handle/mgoeldi/577 [In Portugeuse with English abstract].
| Google Scholar |
Carrijo JN, Maracahipes L, Scalon MC, Silvério DV, Abadia AC, Fagundes MV, Veríssimo AA, Gonçalves LA, Carrijo D, Martins J, Lenza E (2021) Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora 284, 151925.
| Crossref | Google Scholar |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12, 351-366.
| Crossref | Google Scholar | PubMed |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529, 167-171.
| Crossref | Google Scholar | PubMed |
Franco AC, Ball E, Lüttge U (1990) Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia. Oecologia 85, 108-114.
| Crossref | Google Scholar | PubMed |
Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, Kraft NJB, Jump AS (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters 20, 539-553.
| Crossref | Google Scholar | PubMed |
Herzog B, Grams TEE, Haag-Kerwer A, Ball E, Franco AC, Lüttge U (1999) Expression of modes of photosynthesis (C3, CAM) in Clusia criuva Camb. in a Cerrado/Gallery forest transect. Plant Biology 1, 357-364.
| Crossref | Google Scholar |
Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Díez P, Guerrero-Campo J, Palmer C, Pérez-Rontomé MC, Carter G, Hynd A, Romo-Díez A, De Torres Espuny L, Royo Pla F (2011) Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108, 1337-1345.
| Crossref | Google Scholar | PubMed |
Hulshof CM, Violle C, Spasojevic MJ, Mcgill B, Damschen E, Harrison S, Enquist BJ (2013) Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science 24, 921-931.
| Crossref | Google Scholar |
Jardim Botânico do Rio de Janeiro (2023) Flora e Funga do Brasil. Available at http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ConsultaPublicaUC/ConsultaPublicaUC.do#CondicaoTaxonCP
Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. Journal of Ecology 98, 1134-1140.
| Crossref | Google Scholar |
Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Functional Ecology 24, 701-705.
| Crossref | Google Scholar |
Leigh A, Sevanto S, Close JD, Nicotra AB (2017) The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant, Cell & Environment 40, 237-248.
| Crossref | Google Scholar | PubMed |
Maracahipes L, Carlucci MB, Lenza E, Marimon BS, Marimon BH, Jr., Guimarães FAG, Cianciaruso MV (2018) How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter- and intraspecific levels in savanna and forest woody plants. Perspectives in Plant Ecology, Evolution and Systematics 34, 17-25.
| Crossref | Google Scholar |
Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen H, Jansen S, Kramer K, Lapenis A, Manzoni S, Niinemets Ü, Reich PB, Schrodt F, Soudzilovskaia N, Wright IJ, Martínez-Vilalta J (2019) Leaf economics and plant hydraulics drive leaf:wood area ratios. New Phytologist 224, 1544-1556.
| Crossref | Google Scholar | PubMed |
Oliveira RS, Eller CB, Barros FdV, Hirota M, Brum M, Bittencourt P (2021) Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist 230, 904-923.
| Crossref | Google Scholar | PubMed |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565-588.
| Crossref | Google Scholar | PubMed |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2016) Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 64, 715-716.
| Crossref | Google Scholar |
Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102, 275-301.
| Crossref | Google Scholar |
Roberts A, Borland AM, Maxwell K, Griffiths H (1998) Ecophysiology of the C3-CAM intermediate Clusia minor L. in Trinidad: seasonal and short-term photosynthetic characteristics of sun and shade leaves. Journal of Experimental Botany 49, 1563-1573.
| Crossref | Google Scholar |
Ruivo MdLP, Amaral IG, Ribeiro ELdC, Guedes ALS (2002) Os solos de uma Topossequencia na ilha de Algodoal/Maiandeua, nordeste do estado do Pará, Brasil: composição química e produção de matéria orgânica. Acta Amazonica 32, 257.
| Crossref | Google Scholar |
Silva RMd, Mehlig U, Santos JUMd, Menezes MPMd (2010) The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Brazilian Journal of Botany 33, 563-573.
| Crossref | Google Scholar |
Vile D, Garnier É, Shipley B, Laurent G, Navas M-L, Roumet C, Lavorel S, Díaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany 96, 1129-1136.
| Crossref | Google Scholar | PubMed |
Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional!. Oikos 116, 882-892.
| Crossref | Google Scholar |
Walker AP, McCormack ML, Messier J, Myers-Smith IH, Wullschleger SD (2017) Trait covariance: the functional warp of plant diversity? New Phytologist 216, 976-980.
| Crossref | Google Scholar | PubMed |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33, 125-159.
| Crossref | Google Scholar |
Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88, 486-493.
| Crossref | Google Scholar | PubMed |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Pool P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428, 821-827.
| Crossref | Google Scholar | PubMed |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017) Global climatic drivers of leaf size. Science 357, 917-921.
| Crossref | Google Scholar | PubMed |