Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Elucidating the determination of the rosette galls induced by Pisphondylia brasiliensis Couri and Maia 1992 (Cecidomyiidae) on Guapira opposita (Nyctaginaceae)

Graziela Fleury A , Bruno G. Ferreira A , Geraldo L. G. Soares B , Denis C. Oliveira C and Rosy M. S. Isaias A D
+ Author Affiliations
- Author Affiliations

A Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenue Antônio Carlos 6627, Campus Pampulha, CP: 286, CEP: 31270-901, Belo Horizonte, MG, Brazil.

B Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenue Bento Gonçalves 9500, Agronomia, CEP: 91509-900, Porto Alegre, RS, Brazil.

C Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Caixa Postal 593, CEP: 38400-902, Uberlândia, MG, Brazil.

D Corresponding author. Email: rosy@icb.ufmg.br

Australian Journal of Botany 63(7) 608-617 https://doi.org/10.1071/BT15106
Submitted: 1 August 2014  Accepted: 18 July 2015   Published: 14 September 2015

Abstract

The modulation of plant development has been the focus of research on insect galls because galling insects induce distinct shapes to acquire the same necessities, shelter and food. Due to the variety of gall morphotypes, it can be assumed that the key processes for their development rely on plant cells’ morphogenetical potentialities. In the present study we investigated the rosette bud galls induced by Pisphondylia brasiliensis on Guapira opposita to check whether two morphogenetical pathways – the shortening of the internodes and the over differentiation of axillary buds – are independent or whether they are concomitant events towards the morphogenesis of the galls. Biometrical measures were made to test whether the final size of the galls is correlated with the number of inducers per gall. We noted that two patterns of activity were observed in gall meristems: the first differentiated pairs of leaves with opposite phyllotaxy, and the other differentiated new buds at the base of each leafy projection, with the development of sequential leafy projections, in a disorganised phyllotaxy. This second pattern repeated until gall maturation, when a master cambium, typical of the Nyctaginaceae, differentiated in larger galls. The two morphogenetical pathways occurred concomitantly, leading to the overproduction of leafy projections. Cell responses at gall development site produce mechanical protection to P. brasiliensis individuals. The larger galls have the higher number of inducers, and the coalescence of galls allows an increase in gall size by precociously triggering the master cambium activity, a developmental peculiarity of G. opposita uncommon for Cecidomyiidae galls.

Additional keywords: bud galls, internode shortening, leafy projections, meristem differentiation.


References

Barton MK (1998) Cell type specification and self renewal in the vegetative shoot apical meristem. Current Opinion in Plant Biology 1, 37–42.
Cell type specification and self renewal in the vegetative shoot apical meristem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7mslOhsw%3D%3D&md5=61dbaa3e7ee6488f03d89b2104fc2206CAS | 10066561PubMed |

Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annual Review of Cell and Developmental Biology 21, 203–222.
Anisotropic expansion of the plant cell wall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlektbrO&md5=41e86be0ddb831598071ceb9436cd9b7CAS | 16212493PubMed |

Bedetti CS, Modolo LV, Isaias RMS (2014) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochemical Systematics and Ecology 55, 53–59.
The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOjs7vL&md5=a68d8fc925da92fd9444d5f9249663c4CAS |

Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends in Plant Science 5, 110–115.
Formation and maintenance of the shoot apical meristem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvnslKnsQ%3D%3D&md5=219393cdad6bc41b4b688b5e2266d070CAS | 10707076PubMed |

Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In ‘Biology of insect-induced galls’. (Eds JD Shorthouse, O Rohfritsch) pp. 118–140. (Oxford University Press: New York)

Bukatsch F (1972) Bermerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61, 255

Byrne ME (2005) Networks in leaf development. Current Opinion in Plant Biology 8, 59–66.
Networks in leaf development.Crossref | GoogleScholarGoogle Scholar | 15653401PubMed |

Carlquist S (2004) Lateral meristems, successive cambia and their products: a reinterpretation based on roots and stems of Nyctaginaceae. Botanical Journal of the Linnean Society 146, 129–143.
Lateral meristems, successive cambia and their products: a reinterpretation based on roots and stems of Nyctaginaceae.Crossref | GoogleScholarGoogle Scholar |

Carlquist S (2007) Successive cambia revisited: ontogeny, histology, diversity, and functional significance. Journal of the Torrey Botanical Society 134, 301–332.
Successive cambia revisited: ontogeny, histology, diversity, and functional significance.Crossref | GoogleScholarGoogle Scholar |

Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW (2009) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Revista Brasileira de Entomologia 53, 365–378.
Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists?Crossref | GoogleScholarGoogle Scholar |

Carneiro RGS, Pacheco P, Isaias RMS (2015) Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? PLoS One 10, e0129331
Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls?Crossref | GoogleScholarGoogle Scholar |

Castro ACR (2007) ‘Reações estruturais e químicas de Caryocar brasiliense Camb. (Caryocaraceae) a herbívoros galhadores’. MSc Dissertation. Universidade Federal de Minas Gerais, Belo Horizonte.

Couri MS, Maia VC (1992) Considerações sobre Pisphondylia Möhn, 1960 (Diptera, Cecidomyiidae, Asphondyliidi), com descrição de uma espécie nova do Brasil. Revista Brasileira de Entomologia 36, 729–730.

Dawkins R (1982) ‘The extended phenotype: the gene as the unit of selection.’ (Oxford University Press: Oxford)

Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In ‘Biology of insect-induced galls’. (Eds JD Shorthouse, O Rohfritsch) pp. 8–33. (Oxford University Press: New York)

Fahn A (1990) ‘Plant anatomy.’ (Pergamon Press: Oxford)

Felt EP (2001) ‘Plant galls and gall makers.’ (Agrobios: Jodhpur, India)

Fernandes WG (1994) Plant mechanical defenses against insect herbivory. Revista Brasileira de Entomologia 38, 421–433.

Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91, 752–760.
Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae).Crossref | GoogleScholarGoogle Scholar |

Ferreira BG, Isaias RMS (2014) Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora 209, 391–400.
Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae).Crossref | GoogleScholarGoogle Scholar |

Fink S (1999) ‘Pathological and regenerative plant anatomy.’ (Gebrüder Borntraeger: Berlin)

Formiga AT, Silveira FAO, Fernandes GW, Isaias RMS (2015) Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Plant Biology 17, 512–521.
Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M%2Fhslyguw%3D%3D&md5=7f765cad6b46418c86b36dbc54dc570cCAS | 25124804PubMed |

Gagné R (2004) A catalog of the Cecidomyiidae (Diptera) of the world. Memoirs of the entomological Society of Washington 25, 1–408.

Inbar M, Eshel A, Wool D (1995) Interspecific competition among phloem-feeding insects mediated by induced host–plant sinks. Ecology 76, 1506–1515.
Interspecific competition among phloem-feeding insects mediated by induced host–plant sinks.Crossref | GoogleScholarGoogle Scholar |

Isaias RMS (1998) Galhas entomógenas em Machaerium (Leguminosae-Papilionoideae): anatomia e histoquímica. PhD thesis. Universidade de São Paulo, São Paulo, Brazil.

Isaias RMS, Oliveira DC, Carneiro RGS (2011) Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Botany 89, 581–592.
Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae).Crossref | GoogleScholarGoogle Scholar |

Isaias RMS, Carneiro RGS, Oliveira DC, Santos JC (2013) Illustrated and annotated checklist of Brazilian gall morphotypes. Neotropical Entomology 42, 230–239.
Illustrated and annotated checklist of Brazilian gall morphotypes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sbgtVeguw%3D%3D&md5=4e7ea97993204b7d7b75bd625de84630CAS |

Isaias RMS, Oliveira DC, Carneiro RGS, Kraus JE (2014a) Developmental anatomy of galls in Neotropics: arthropods stimuli versus host plant constraits. In ‘Neotropical insect galls’. (Eds JC Santos, GW Fernandes) pp. 15–34. (Springer: New York)

Isaias RMS, Carneiro RGS, Santos JC, Oliveira DC (2014b) Gall morphotypes in the Neotropics and the needs to standardize them. In ‘Neotropical Insect Galls’ (Eds JC Santos, GW Fernandes) pp. 51–68. (Springer: New York)

Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS (2015) The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation. Biochimica et Biophysica Acta.
The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation.Crossref | GoogleScholarGoogle Scholar |

Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill Books: New York)

Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. Journal of Cell Biology 27, 137–138.

Kerstetter RA, Hake S (1997) Shoot meristem formation in vegetative development. The Plant Cell 9, 1001–1010.
Shoot meristem formation in vegetative development.Crossref | GoogleScholarGoogle Scholar | 12237372PubMed |

Kraus JE (1997) Respostas morfogenéticas de plantas a indutores galhadores. In ‘Interações ecológicas e biodiversidade’. (Eds MCP Araújo, GC Coelho, L Medeiros) pp. 59–75. (UNIJUÍ: Ijuí, Brazil)

Kraus JE, Arduin M (1997) ‘Manual Básico de métodos em morfologia vegetal.’ (EDUR: Seropédica, Brazil)

Kraus JE, Isaias RMS, Fernandes GW (2003) Structure of insect galls on two sympatric subspecies of Chrysothamus nauseosus (Pall. ex Pursh) Britton (Asteraceae). Boletim de Botânica da Universidade de São Paulo 21, 251–263.

Larson KC, Whitham TG (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink–source interactions. Oecologia 88, 15–21.
Manipulation of food resources by a gall-forming aphid: the physiology of sink–source interactions.Crossref | GoogleScholarGoogle Scholar |

Lev-Yadun S (2003) Stem cells in plant are differentiated too. Current Topics in Plant Biology 4, 93–102.

Magalhães TA, Suzuki AYM, Oliveira DC, Isaias RMS (2014) Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC (Asteraceae). Protoplasma 251, 747–753.
Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC (Asteraceae).Crossref | GoogleScholarGoogle Scholar | 24213017PubMed |

Maia VC (1993) Considerações sobre Proasphondylia Felt, 1915 (Diptera, Cecidomyiidae, Asphondyliidi) com descrição de duas espécies novas associadas com Guapira opposita (Velloso) Reitz. (Nyctaginaceae). Revista Brasileira de Zoologia 10, 215–218.
Considerações sobre Proasphondylia Felt, 1915 (Diptera, Cecidomyiidae, Asphondyliidi) com descrição de duas espécies novas associadas com Guapira opposita (Velloso) Reitz. (Nyctaginaceae).Crossref | GoogleScholarGoogle Scholar |

Maia VC (2005) Catálogo dos Cecidomyiidae (Diptera) do estado do Rio de Janeiro. Biota Neotropica 5, 1–26.
Catálogo dos Cecidomyiidae (Diptera) do estado do Rio de Janeiro.Crossref | GoogleScholarGoogle Scholar |

Maia VC (2013) Galhas de insetos em restingas da região sudeste do Brasil com novos registros. Biota Neotropica 13, 183–209.
Galhas de insetos em restingas da região sudeste do Brasil com novos registros.Crossref | GoogleScholarGoogle Scholar |

Maia VC, Oliveira JC (2010) Galhas de Insetos da Reserva Biológica Estadual da Praia do Sul (Ilha Grande, Angra dos Reis, RJ). Biota Neotropica 10, 227–237.
Galhas de Insetos da Reserva Biológica Estadual da Praia do Sul (Ilha Grande, Angra dos Reis, RJ).Crossref | GoogleScholarGoogle Scholar |

Maia VC, Magenta MAG, Martins SE (2008) Ocorrência e caracterização de galhas de insetos em áreas de restinga de Bertioga (São Paulo, Brasil). Biota Neotropica 8, 167–197.
Ocorrência e caracterização de galhas de insetos em áreas de restinga de Bertioga (São Paulo, Brasil).Crossref | GoogleScholarGoogle Scholar |

Maia VC, Fleury G, Soares GLG, Isaias RMS (2010) Description of the female, pupe and gall of Pisphondylia brasiliensis Couri and Maia, 1992 (Diptera: Cecidomyiidae, Schizomyiina) with new records. Brazilian Journal of Biology 70, 1059–1063.
Description of the female, pupe and gall of Pisphondylia brasiliensis Couri and Maia, 1992 (Diptera: Cecidomyiidae, Schizomyiina) with new records.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M%2FmsFGrsw%3D%3D&md5=32050cb19ae85f541759fabe9e2e1331CAS |

Mani MS (1964) ‘Ecology of plant galls.’ (Dr W. Junk: The Hague, The Netherlands)

Martin C, Glover BJ (2007) Functional aspects of cell patterning in aerial epidermis. Current Opinion in Plant Biology 10, 70–82.
Functional aspects of cell patterning in aerial epidermis.Crossref | GoogleScholarGoogle Scholar | 17140837PubMed |

Mendonça MS, (2007) Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal–plant interaction in the neotropics. Boletín de la Sociedad Argentina de Botánica 42, 347–357.

Moura MZD, Soares GLG, Isaias RMS (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Australian Journal of Botany 56, 153–160.
Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae).Crossref | GoogleScholarGoogle Scholar |

Oliveira DC (2007) Relações entre ontogenia foliar e idade dos tecidos para o valor adaptativo de galhas em Copaifera langsdorffii Desf. (Fabaceae). MSc Dissertation. Universidade Federal de Minas Gerais: Belo Horizonte, Brazil.

Oliveira DC, Isaias RMS (2009) Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae). Revista de Biologia Tropical 57, 293–302.

Oliveira DC, Isaias RMS (2010) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). South African Journal of Botany 76, 239–248.
Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae).Crossref | GoogleScholarGoogle Scholar |

Oliveira DC, Christiano JCS, Soares GLG, Isaias RMS (2006) Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hass. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera, Psyllidae). Revista Brasileira de Botanica. Brazilian Journal of Botany 29, 657–667.
Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hass. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera, Psyllidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs12rtrk%3D&md5=421849a924c4b7622266f028f26fdf75CAS |

Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242, 81–93.
Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVentb8%3D&md5=86af374f391887befb13f0c7340ee845CAS | 20306094PubMed |

Oliveira DC, Carneiro RGS, Magalhães TA, Isaias RMS (2011a) Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae)–Cecidomyiidae gall systems. Protoplasma 248, 829–837.
Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae)–Cecidomyiidae gall systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaht7rO&md5=ca60dd1acb842dd8f9e8dbc0e06996fdCAS | 21207084PubMed |

Oliveira DC, Isaias RMS, Moreira ASFP, Magalhães TA, Lemos-Filho JP (2011b) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? Plant Science 180, 489–495.
Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis?Crossref | GoogleScholarGoogle Scholar | 21421396PubMed |

Paiva JGA, Fank-De-Carvalho SM, Magalhães MP, Graciano-Ribeiro D (2006) Verniz vitral incolor 500®: uma alternativa de meio de montagem economicamente viável. Acta Botanica Brasílica 20, 257–264.
Verniz vitral incolor 500®: uma alternativa de meio de montagem economicamente viável.Crossref | GoogleScholarGoogle Scholar |

Price PW (2005) Adaptive radiation of gall-inducing insects. Basic and Applied Ecology 6, 413–421.
Adaptive radiation of gall-inducing insects.Crossref | GoogleScholarGoogle Scholar |

Raman A (2007) Insect-induced plant galls of India: unresolved questions. Current Science 92, 748–757.

Raman A, Abrahamson WG (1995) Morphometric relationships and energy allocation in the apical rosette galls of Solidago altissima (Asteraceae) induced by Rhopalomyia solidaginis (Diptera: Cecidomyiidae). Environmental Entomology 24, 635–639.
Morphometric relationships and energy allocation in the apical rosette galls of Solidago altissima (Asteraceae) induced by Rhopalomyia solidaginis (Diptera: Cecidomyiidae).Crossref | GoogleScholarGoogle Scholar |

Redfern M, Askew RR (1992) ‘Plant galls.’ (Richmond Publishing Co Ltd.: Richmond, UK)

Rohfritsch O (1992) Patterns in gall development. In ‘Biology of insect-induced galls’. (Eds JD Shorthouse, O Rohfritsch) pp. 60–86. (Oxford University Press: New York)

Shorthouse JD, Wool D, Raman A (2005) Gall-inducing insects – nature’s most sophisticated herbivores. Basic and Applied Ecology 6, 407–411.
Gall-inducing insects – nature’s most sophisticated herbivores.Crossref | GoogleScholarGoogle Scholar |

Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends in Ecology & Evolution 18, 512–522.
The adaptive significance of insect gall morphology.Crossref | GoogleScholarGoogle Scholar |

Vecchi C (2004) Reações diferenciais a herbívoros em espécies de Melastomaceae. PhD thesis. Universidade de São Paulo: São Paulo, Brazil.

Weis AE, Walton R, Crego CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annual Review of Entomology 33, 467–486.
Reactive plant tissue sites and the population biology of gall makers.Crossref | GoogleScholarGoogle Scholar |