Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990–2000 and future projections

E. Garcia-Apaza A B , O. Paz A and I. Arana A
+ Author Affiliations
- Author Affiliations

A National Program on Climate Change, La Paz, Bolivia.

B Corresponding author. Email: garciaa_emilio@yahoo.com

Australian Journal of Experimental Agriculture 48(2) 255-259 https://doi.org/10.1071/EA07247
Submitted: 6 August 2007  Accepted: 18 October 2007   Published: 2 January 2008

Abstract

Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990–2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001–2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.

Additional keywords: cattle, enteric fermentation, GHG, livestock, methane emission.


Acknowledgements

We thank USAID – The Nature Conservancy for financial support and past and present members of PNCC (consultants) for technical assistance in preparing the manuscript and for helpful critical review.


References


Alford AR, Hegarty CRS, Parnell PF, Cacho OJ, Herd RM, Griffith GR (2006) The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Australian Journal of Experimental Agriculture 46(7), 813–820.
Crossref | GoogleScholarGoogle Scholar | [Verified 20 November 2007].

IPCC (2001) ‘Climate Change 2001: a scientific basis.’ (Eds JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, CA Johnson, K Maskell) (Cambridge University Press: Cambridge, UK)

Leng RA (1993) Quantitative ruminant nutrition – a green science. Australian Journal of Agricultural Research 44, 363–380.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maiza MR , Cardoso GA (1990) Digestibilidad del Ichu (Stipa ichu) en ovinos, llamas y vicuñas. En ‘Memoria de la décima reunión de la asociación boliviana de producción animal (ABOPA)’. p. 54. (Instituto Boliviano de Tecnología Agropecuaria: La Paz, Bolivia)

Ministerio de Desarrollo Sostenible (2003) ‘Viceministerio de recursos naturales y medio ambiente, programa nacional de cambios climáticos. Inventario nacional de emisiones de gases de efecto invernadero de Bolivia para la década 1990–2000 y su análisis tendencial.’ p. 218. (MDS-VRNMA-PNCC)

Minson DJ (1990) ‘Forage in ruminant nutrition.’ (Academic Press: New York)

Oviedo DF (1996) Eficiencia de la conversión alimenticia y efectos residuales de afrechillo de trigo (Triticum durum) y torta de soya (Glycine max) en vacas lecheras. Thesis, Mayor de San Andrés University.

Portugal SI (1998) Influencia microbiana ruminal sobre la pared celular y la tasa fermentativa de Hordeum vulgare y Chenopodium quinoa, tratada con hidróxido de sodio, o hipoclorito de sodio, digerida in vitro. Thesis, Mayor de San Andrés University.

USEPA (1993) ‘Current and future methane emissions from natural sources: report to congress.’ (Office Atmospheric and Indoor Programs, USEPA: Washington DC)

Van Soest PJ (1994) ‘Nutrition ecology of the ruminant.’ 2nd edn. (Cornell University Press, Ithaca: NY)