Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effect of Propionibacterium freudenreichii in diets containing rapeseed or flaxseed oil on in vitro ruminal fermentation, methane production and fatty acid biohydrogenation

S. Ding A B , S. J. Meale A B G , A. Y. Alazzeh C B , M. L. He B , G. O. Ribeiro Jr. B D , L. Jin B E , Y. Wang B , M. E. R. Dugan F , A. V. Chaves A and T. A. McAllister B H
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.

B Lethbridge Research Center, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, Alberta, Canada, T1J 4B1.

C Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Ha’il Ha’il, Saudi Arabia.

D CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil.

E Department of Animal Science, Northeast Agricultural University, No.59 Mucai Street, XiangFang District, Harbin, Heilongjiang, China.

F Lacombe Research Center, Agriculture and Agri-Food Canada, 6000C and E Trail, Lacombe, Alberta, Canada, T4L 1W1.

G Present address: INRA, UR1213 Herbivores, 63122 Site de Theix, Saint-Genés-Champanelle, France.

H Corresponding author. Email: Tim.McAllister@agr.gc.ca

Animal Production Science 57(10) 2051-2059 https://doi.org/10.1071/AN15878
Submitted: 25 March 2015  Accepted: 2 August 2016   Published: 5 September 2016

Abstract

The objectives of the present study were to determine the effect of inoculating Propionibacterium freudenreichii subsp. shermanii ATCC 8262 (1 × 109 colony-forming units per vial) in a barley silage-based diet supplemented with flaxseed oil or rapeseed oil (60 g/kg DM), on in vitro proportions and yield of volatile fatty acids, methane production and fatty acid (FA) biohydrogenation. Total volatile fatty acid production (mM) and proportions of individual FAs were not affected (P ≥ 0.10) by P. freudenreichii. Similarly, propionibacteria had little impact on FA biohydrogenation, resulting only in an increased accumulation (P < 0.01) of C18:1 cis-15 (g/kg total FA) at 6 h of incubation, compared with the control (CON). Compared with the CON, an increased (P < 0.01) accumulation of vaccenic acid was observed at 48 h in all oil-containing treatments, regardless of the oil type. Similarly, the apparent biohydrogenation of flaxseed oil resulted in an increased (P ≤ 0.04) accumulation of conjugated linoleic acid cis-9, trans-11, compared with all other treatments. Additionally, flaxseed oil produced a greater (P ≤ 0.01) accumulation of beneficial biohydrogenation intermediates (C18:2 trans-11, cis-15; C18:1 cis-15 and vaccenic acid), reflecting its ability to produce a more desirable FA profile than that of rapeseed oil or CON. The inability of P. freudenreichii subsp. shermanii ATCC 8262 to alter ruminal fermentation in a manner that lowered methane production, along with only minor effects on FA profiles through biohydrogenation, suggests that the biological activity of this strain was not realised under in vitro batch-culture conditions.

Additional keywords: barley silage, batch culture, cattle, direct-fed microbial, probiotic, propionibacteria, rumen.


References

Alazzeh A, Sultana H, Beauchemin KA, Wang Y, Holo H, Harstad OM, McAllister TA (2012) Using strains of propionibacteria to mitigate methane emissions in vitro. Acta Agriculturae Scandinavica, Section A. Animal Science 62, 263–272.

Alazzeh AY, Smith AH, Beauchemin KA, Meale SJ, McAllister TA (2014) Supplementing Propionibacterium acidipropionici P169 does not affect methane production or volatile fatty acid profiles of different diets in in vitro rumen cultures from heifers. Acta Agriculturae Scandinavica, Section A. Animal Science 64, 170–177.

Beam TM, Jenkins TC, Moate PJ, Kohn RA, Palmquist DL (2000) effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. Journal of Dairy Science 83, 2564–2573.
effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVCgt7g%3D&md5=d412f844268df32fe1fe7d4a9fb7ab50CAS | 11104276PubMed |

Beauchemin KA, McGinn SM, Petit H (2007) Methane abatement strategies for cattle: lipid supplementation of diets. Canadian Journal of Animal Science 87, 431–440.
Methane abatement strategies for cattle: lipid supplementation of diets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSrsbnF&md5=bb97b2cc206504ea2ac1aa5e3ab6a31cCAS |

Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annual Review of Nutrition 22, 505–531.
Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2htbo%3D&md5=31bb23e2eb9c065a4020af966297e6b8CAS | 12055356PubMed |

Chaves AV, Thompson LC, Iwaasa AD, Scott SL, Olson ME, Benchaar C, Veira DM, McAllister TA (2006) Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Canadian Journal of Animal Science 86, 409–418.
Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFKlur4%3D&md5=00ddcaab654ab42bdc8fd0b7cd355a57CAS |

Cousin FJ, Mater DDG, Foligne B, Jan G (2010) Dairy propionibacteria as human probiotics: a review of recent evidence. Dairy Science & Technology 91, 1–26.

Demeyer DI, Henderickx HK (1967) The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochimica et Biophysica Acta: Lipids and Lipid Metabolism 137, 484–497.
The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXpsFCg&md5=4192c2305d52e7137bf99a48bc70bd89CAS |

Devillard E, Wallace RJ (2006) Biohydrogenation in the rumen and human intestine: implications for CLA and PUFA. Lipid Technology 18, 127–130.

Dohme F, Machmueller A, Wasserfallen A, Kreuzer M (2000) Comparative effciency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Canadian Journal of Animal Science 80, 473–484.
Comparative effciency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Ohtrg%3D&md5=dbac9d75672146f304613e1284b3f578CAS |

Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng K-J (1997) Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Canadian Journal of Animal Science 77, 269–278.
Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1emur0%3D&md5=1fd5af4a54766978a8b24c4b08476c4cCAS |

Dugan MER, Aldai N, Aalhus JL, Rolland DC, Kramer JKG (2011) Review: trans-forming beef to provide healthier fatty acid profiles. Canadian Journal of Animal Science 91, 545–556.
Review: trans-forming beef to provide healthier fatty acid profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislWntrg%3D&md5=1f2988e4972470673a8372d6548dc31cCAS |

Fedorah PM, Hrudey SE (1983) A simple apparatus for measuring gas-production by methanogenic cultures in serum bottles. Environmental Technology Letters 4, 425–432.
A simple apparatus for measuring gas-production by methanogenic cultures in serum bottles.Crossref | GoogleScholarGoogle Scholar |

Fievez V, Vlaeminck B, Jenkins T, Enjalbert F, Doreau M (2007) Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. European Journal of Lipid Science and Technology 109, 740–756.
Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSnsr3J&md5=d810406b2fd76b8a8bd37d07fd68bdb0CAS |

Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)- desaturase. The Journal of Nutrition 130, 2285–2291.

Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In ‘The rumen microbial ecosystem’, 2nd edn. (Eds PN Hobson, CS Stewart) pp. 140–197. (Chapman & Hall: London)

He ML, McAllister TA, Kastelic JP, Mir PS, Aalhus JL, Dugan ME, Aldai N, McKinnon JJ (2012) Feeding flaxseed in grass hay and barley silage diets to beef cows increases alpha-linolenic acid and its biohydrogenation intermediates in subcutaneous fat. Journal of Animal Science 90, 592–604.
Feeding flaxseed in grass hay and barley silage diets to beef cows increases alpha-linolenic acid and its biohydrogenation intermediates in subcutaneous fat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVeltLk%3D&md5=68a392ddd37209926589145e7a0186f2CAS | 22274861PubMed |

Hennessy AA, Barrett E, Ross RP, Fitzgerald GF, Devery R, Stanton C (2012) The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of Bifidobacteria and Propionibacteria. Lipids 47, 313–327.
The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of Bifidobacteria and Propionibacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2qsLrK&md5=5e5daa9f574561512c677bbb7a346f66CAS | 22160449PubMed |

Himmi EH, Bories A, Boussaid A, Hassani L (2000) Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Applied Microbiology and Biotechnology 53, 435–440.
Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFWiu7w%3D&md5=1c5f2ef49ab603e737421dd74bdf2793CAS | 10803900PubMed |

Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Cheeke PR, Benchaar C (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science 92, 2809–2821.
Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFems7Y%3D&md5=1a5a22df8e510e7eefb47c0e579c002bCAS | 19448015PubMed |

Iqbal M, Cheng YF, Zhu WY, Zeshan B (2008) Mitigation of ruminant methane production: current strategies, constraints and future options. World Journal of Microbiology & Biotechnology 24, 2747–2755.
Mitigation of ruminant methane production: current strategies, constraints and future options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OksLnE&md5=6c74aa321eb2b979a391427ec8cab65bCAS |

Jalč D, Čerešňáková Z (2001) Effect of plant oils and aspartate on rumen fermentation in vitro. Journal of Animal Physiology and Animal Nutrition 85, 378–384.
Effect of plant oils and aspartate on rumen fermentation in vitro.Crossref | GoogleScholarGoogle Scholar | 11906562PubMed |

Kim SW, Standorf DG, Roman-Rosario H, Standford DG, Yokoyama MT (2000) Potential use of Propionibacterium acidipropionici, strain DH42, as a direct-fed microbial for cattle. Journal of Animal Science 78, 45–55.

Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. Journal of the American Oil Chemists’ Society 79, 159–163.
Conjugated linoleic acid production from linoleic acid by lactic acid bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVemsrc%3D&md5=2298893ae011285b7054d8a4ae472d92CAS |

Krehbiel CR, Rust SR, Zhang G, Gililand SE (2003) Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. Journal of Animal Science 81, E120–E32.

Lawson RE, Moss AR, Givens DI (2001) The role of dairy products in supplying conjugated linoleic acid to man’s diet: a review. Nutrition Research Reviews 14, 153–172.
The role of dairy products in supplying conjugated linoleic acid to man’s diet: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1egs70%3D&md5=751bde83dd9f9b15ad03832d95da5f94CAS | 19087420PubMed |

Lehloenya KV, Krehbiel CR, Mertz KJ, Rehberger TG, Spicer LJ (2008) Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. Journal of Dairy Science 91, 653–662.
Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaitrw%3D&md5=4aab7dd34eff7099e72f1c5c3fac72ceCAS | 18218753PubMed |

Lourenço M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4, 1008–1023.
The role of microbes in rumen lipolysis and biohydrogenation and their manipulation.Crossref | GoogleScholarGoogle Scholar | 22444606PubMed |

Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. Journal of Animal Science 86, 2642–2650.
Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ams7vF&md5=6db1c513144f0afa3532af58c64ffe27CAS | 18469051PubMed |

McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture 48, 7–13.
Redirecting rumen fermentation to reduce methanogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVKh&md5=d7a78771cda0b15fd05ada6c366c00c1CAS |

Meale SJ, McAllister TA, Beauchemin KA, Harstad OM, Chaves AV (2012) Strategies to reduce greenhouse gases from ruminant livestock. Acta Agriculturae Scandinavica, Section A. Animal Science 62, 199–211.

Meale SJ, Ding S, He ML, Dugan MER, Ribeiro GO, Alazzeh AY, Holo H, Harstad OM, McAllister TA, Chaves AV (2014) Effect of Propionibacterium freudenreichii on ruminal fermentation patterns, methane production and lipid biohydrogenation of beef finishing diets containing flaxseed oil in a rumen simulation technique. Canadian Journal of Animal Science 94, 685–695.
Effect of Propionibacterium freudenreichii on ruminal fermentation patterns, methane production and lipid biohydrogenation of beef finishing diets containing flaxseed oil in a rumen simulation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFejur%2FJ&md5=ebf53a03f07285ad76e2fa8393317b34CAS |

Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W (1979) Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science 93, 217–222.
Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsFKitbc%3D&md5=9d72d2b8aa4d2f157aacadbfe3e6f5adCAS |

Pariza MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. The American Journal of Clinical Nutrition 79, 1132S–1136S.

Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research 40, 283–298.
The biologically active isomers of conjugated linoleic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFWhurs%3D&md5=ae1ea6d40f48d7fa6f00c7155ba56668CAS | 11412893PubMed |

Rainio A, Vahvaselkä M, Suomalainen T, Laakso S (2001) Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Canadian Journal of Microbiology 47, 735–740.
Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12gurY%3D&md5=d142f661d7d27de4d6b82722837c4ff9CAS | 11575500PubMed |

Rainio A, Vahvaselka M, Suomalainen T, Laakso S (2002) Production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Le Lait 82, 91–101.
Production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1entb8%3D&md5=1a7ab0250fee605b440d50b680dafa88CAS |

Roy A, Ferlay A, Shingfield KJ, Chilliard Y (2006) Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid. Animal Science 82, 479–492.
Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpslahtLk%3D&md5=0fda8a7d1fb514ac46ad52df5aee0072CAS |

SAS (2012) ‘SAS OnlineDoc® 9.1.3.’ (SAS Inc.: Cary, NC)

Shingfield KJ, Lee MRF, Humphries DJ, Scollan ND, Toivonen V, Beever DE, Reynolds CK (2011) Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets. Journal of Animal Science 89, 3728–3741.
Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSqsrvL&md5=be657f7b80c7cf1b4554c4392d063bd9CAS | 21705636PubMed |

Storlien TM, Harstad OM, Narvaez N, Wang Y, Mcallister TA (2012) Effects of different oils and plant extracts on in vitro ruminal methane production. Acta Agriculturae Scandinavica, Section A. Animal Science 62, 300–304.
Effects of different oils and plant extracts on in vitro ruminal methane production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVGjs70%3D&md5=2086ca26c6dfe7de8c08b9edea712e1fCAS |

Tricon S, Burdge GC, Kew S, Banerjee T, Russell JJ, Jones EL, Grimble RF, Williams CM, Yaqoob P, Calder PC (2004) Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. The American Journal of Clinical Nutrition 80, 614–620.

Ueda K, Ferlay A, Chabrot J, Loor JJ, Chillard Y, Doreau M (2003) Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage:concentrate ratios. Journal of Dairy Science 86, 3999–4007.
Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage:concentrate ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgs7fP&md5=5f86665226d0e8ba39aee213701429b9CAS | 14740838PubMed |

Van Nevel C, Demeyer DI (1995) Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials. Journal of Dairy Science 78, 2797–2806.
Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFajt7k%3D&md5=cf9aca5e7a481390bf5610a113af5ad6CAS | 8675762PubMed |

Vlaeminck B, Mengistu G, Fievez V, de Jonge L, Dijkstra J (2008) Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass. Journal of Dairy Science 91, 1122–1132.
Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFemtLk%3D&md5=fc9c208c899505d4e459d359ac3f8a27CAS | 18292268PubMed |

Wang LM, Lv JP, Chu ZQ, Cui YY, Ren XH (2007) Production of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chemistry 103, 313–318.
Production of conjugated linoleic acid by Propionibacterium freudenreichii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVSrtb8%3D&md5=d5484cc48e77490b9200e842337c877fCAS |

Weiss WP, Wyatt DJ, McKelvey TR (2008) Effect of feeding propionibacteria on milk production by early lactation dairy cows. Journal of Dairy Science 91, 646–652.
Effect of feeding propionibacteria on milk production by early lactation dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaitr8%3D&md5=f5bf52327194139c883f6bc6de37142eCAS | 18218752PubMed |

Whigham LD, Cook ME, Atkinson RL (2000) Conjugated linoleic acid: Implications for human health. Pharmacological Research 42, 503–510.
Conjugated linoleic acid: Implications for human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlaguw%3D%3D&md5=627f5fa1260b6f249884dd39fd313e2aCAS | 11058400PubMed |

Zhang CM, Guo YQ, Yuan ZP, Wu YM, Wang JK, Liu JX, Zhu WY (2008) Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology 146, 259–269.
Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCku7fL&md5=401e6475df62c599afc516f72be7d2e9CAS |