Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Blood proteins of red deer introduced to Patagonia: genetic origins and variability

Werner T. Flueck A B C and Jo Anne M. Smith-Flueck C
+ Author Affiliations
- Author Affiliations

A National Council of Scientific and Technological Research (CONICET), Buenos Aires; Swiss Tropical Institute, University Basel; C.C. 592, 8400 Bariloche, Argentina.

B Institute of Natural Resources Analysis – Patagonia, Universidad Atlantida Argentina, C.C. 592, 8400 Bariloche, Argentina.

C Corresponding author. Email: wtf@deerlab.org

Animal Production Science 51(4) 359-364 https://doi.org/10.1071/AN10186
Submitted: 25 September 2010  Accepted: 8 February 2011   Published: 8 April 2011

Abstract

A small group of European red deer (Cervus elaphus elaphus) was introduced into the foothills of the Andes in Patagonia in the early 1920s. This species adapted well to the habitat and climatic conditions in the area and presently may number over 100 000 animals. Several indices commonly used to evaluate the fitness of a species in its environment indicate that red deer thrive under very favourable conditions in Patagonia; for example, body size, antler development, reproductive rates, herd health, and longevity are near the maximum described for the species. Furthermore, some local populations occur at densities much higher than encountered in their native ranges. The objective was to examine several biological enzyme systems to test for variance in protein polymorphism in comparison to populations of red deer in other parts of the world. The protein systems examined by electrophoresis in the plasma included: post-transferrin, transferrin, vitamin D binding protein, plasminogen, and complement component; and in the erythrocytes: hemoglobin, superoxide dismutase, glucose phosphate isomerase, and diaphorase I. Variation in plasminogen was lower than is typical for red deer, and glucose phosphate isomerase showed no variation. Furthermore, some occurrences of alleles typical for North American wapiti (Cervus elaphus canadensis) indicate that the introduced deer originated from English or European deer parks which have had a history of introductions of wapiti in the past. In New Zealand, the superoxide dismutase allele typical for wapiti was found in 1% of red deer, whereas it occurred in 11% of animals in the present study. Polymorphism measured across the nine examined protein systems was 2.0 alleles per locus with an overall heterozygosity of 0.30. The low variations are likely the result of the introduction based on few individuals. However, the outstanding performance of the present population contradicts the existence of any overt impact from this founder effect. The observed large body sizes may not only be due to good environmental conditions, but also due to previous hybridisation with wapiti. Several specimens were heterozygous and one specimen was homozygous for wapiti hemoglobin.

Additional keywords: Cervus elaphus, founder effect, electrophoresis, invasion, wapiti.


References

[1]  Flueck WT, Smith-Flueck JM. Über das in Argentinien angesiedelte Rotwild (Cervus elaphus, L., 1758): Verbreitung und Tendenzen. Z Jagdwiss 1993; 39 153–60.
Über das in Argentinien angesiedelte Rotwild (Cervus elaphus, L., 1758): Verbreitung und Tendenzen.Crossref | GoogleScholarGoogle Scholar |

[2]  Godoy JC. Fauna silvestre. Buenos Aires, Argentina: Consejo Federal de Inversiones; 1963.

[3]  Flueck WT, Smith-Flueck JM, Naumann CM. The current distribution of red deer (Cervus elaphus) in southern Latin America. Eur J Wildl Res 2003; 49 112–9.

[4]  Flueck WT. Body reserves and pregnancy rates of introduced red deer in Patagonia (Argentina) after a period of drought. Ecologia Austral 2001; 11 11–24.

[5]  Flueck WT. Offspring sex ratio in relation to body reserves in red deer (Cervus elaphus). Eur J Wildl Res 2002; 48S 99–106.

[6]  Flueck WT, Smith-Flueck JM, Bonino NA. A preliminary analysis of cause-specific and capture-related mortality, and survival of adult red deer in northwestern Patagonia. Ecologia Austral 2005; 15 23–30.

[7]  Flueck WT. Offspring sex ratio of introduced red deer in Patagonia, Argentina after an intensive drought. Journal of Neotropical Mammalogy 2001; 8 139–47.

[8]  Ghane B, Jumeja R, Grolmus J. Horizontal polyacrylamide gradient gel electrphoresis for simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Anim Blood Groups Biochem Genet 1977; 8 127
Horizontal polyacrylamide gradient gel electrphoresis for simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle.Crossref | GoogleScholarGoogle Scholar | 603096PubMed |

[9]  Tate ML, Dodds KG, Thomas KJ, McEwan KM. Genetic polymorphism of plasminogen and vitamin D binding protein in red deer, Cervus elaphus L. Anim Genet 1992; 23 209–19.

[10]  Tate ML, McEwan KM. Genetic polymorphism of erythrocyte diaphorase in red deer, Cervus elaphus L. Anim Genet 1992; 23 449–52.
Genetic polymorphism of erythrocyte diaphorase in red deer, Cervus elaphus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVyh&md5=17f28c9efb26ef0c23c6464557404ce9CAS | 1416251PubMed |

[11]  Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978; 89 583–90.
| 1:STN:280:DC%2BC3crpt1Kqtg%3D%3D&md5=47fee5f46ca3d7040e59640cd36aa1e5CAS | 17248844PubMed |

[12]  Gyllensten U, Reuterwall C, Ryman N, Stahl G. Geographical variation of transferrin allele frequencies in three deer species from Scandinavia. Hereditas 1980; 92 237–41.
Geographical variation of transferrin allele frequencies in three deer species from Scandinavia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3islektQ%3D%3D&md5=8bf3ebed3e1cfc346320a99a08a07ccaCAS | 7390868PubMed |

[13]  Emerson BC, Tate ML. Genetic analysis of evolutionary relationships among deer (Subfamily Cervinae). J Hered 1993; 84 266–73.
| 1:STN:280:DyaK3szktVCmsg%3D%3D&md5=5e7fb61fe0e703554c4c50006894c434CAS | 8340615PubMed |

[14]  Dratch PA. A marker for red deer – Wapiti hybrids. Proc NZ Soc Anim Prod 1986; 46 179–82.

[15]  Geburek T. Genetische Differenzierung anhand biochemisch-genetischer Polymorphismen in der Familie der Cervidae. Z Jagdwiss 1988; 34 217–31.
Genetische Differenzierung anhand biochemisch-genetischer Polymorphismen in der Familie der Cervidae.Crossref | GoogleScholarGoogle Scholar |

[16]  Hartl GB, Willing R, Lang G, Klein F, Koeller J. Genetic variability and differentiation in red deer (Cervus elaphus L.) of central Europe. Genet Sel Evol 1990; 22 289–306.
Genetic variability and differentiation in red deer (Cervus elaphus L.) of central Europe.Crossref | GoogleScholarGoogle Scholar |

[17]  Ströhlein H, Lewalski H, Hecht W, Herzog A. Elektrophoretische Untersuchungen der Superoxiddismutase-Isoenzyme beim hessischen Rotwild. Z Jagdwiss 1991; 37 35–9.
Elektrophoretische Untersuchungen der Superoxiddismutase-Isoenzyme beim hessischen Rotwild.Crossref | GoogleScholarGoogle Scholar |

[18]  Wollenhaupt H. Die Ansiedlung, Bestandesentwicklung und Status des Rothirsches (Cervus elaphus L., 1758) in Chile. Dissertation, Georg-August-Universität, Göttingen, Germany; 1983.

[19]  Lever C. Naturalized mammals of the world. New York: Longman Inc.; 1985.

[20]  Niethammer G. Die Einbürgerung von Säugetieren und Vögeln in Europa. Hamburg, Germany: Verlag Paul Parey; 1963.

[21]  Beninde J. Zur Naturgeschichte des Rothirsches. Leipzig, Germany: Verlag Dr Paul Schöps; 1937.

[22]  Ückermann E. Die Rothirschgeweihsammlung im Residenzschloss Detmold. Z Jagdwiss 1990; 36 252–61.
Die Rothirschgeweihsammlung im Residenzschloss Detmold.Crossref | GoogleScholarGoogle Scholar |

[23]  Ludt CJ, Schroeder W, Rottmann O, Kuehn R. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 2004; 31 1064–83.
Mitochondrial DNA phylogeography of red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1alsb8%3D&md5=91f6141c3ba8b8a88ad3d0066aa4214dCAS | 15120401PubMed |

[24]  Hurtado AM, Smith-Flueck JM, Black-Decima P. Description of vocalizations in exotic European red deer stags (Cervus elaphus) during the rut in Northwestern Patagonia (Argentina). Anim Prod Sci 2011; 51(4). [Short communication] http://www.publish.csiro.au/nid/72/issue/5591.htm

[25]  Flueck WT, Smith-Flueck JM. El ciervo rojo exótico en el ambiente patagónico: biología, impacto y opciones de manejo para áreas protegidas. In: Inchausty VH, editor. Proceedings 2nd Latinamerican Congress on National Parks and Protected Areas. Quito: Ecuador: IUCN; 2007.