Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Population monitoring of small and declining brush-tailed rock wallaby (Petrogale penicillata) colonies at the extreme of their range using faecal DNA sampling

Maxine P. Piggott A F , Birgita Hansen B , Todd Soderquist C , Mark D. B. Eldridge D and Andrea C. Taylor E
+ Author Affiliations
- Author Affiliations

A Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 44 Daley Road, Acton, ACT 2601, Australia.

B Faculty of Science and Technology, Federation University Australia (Mt Helen), Ballarat, Vic. 3350, Australia.

C Ecosystems and Threatened Species Unit, NSW Office of Environment and Heritage, 48 Wingewarra Street, Dubbo, NSW 2830, Australia.

D Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.

E School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia.

F Corresponding author. Email: maxine.piggott@anu.edu.au

Australian Mammalogy 40(1) 58-66 https://doi.org/10.1071/AM16056
Submitted: 24 November 2016  Accepted: 29 March 2017   Published: 7 July 2017

Abstract

Obtaining much-needed information on population parameters such as abundance and genetic diversity can be difficult for small and declining populations. The brush-tailed rock-wallaby (Petrogale penicillata) is an endangered and cryptic species with many colonies in decline. The Warrumbungle National Park (NP) in New South Wales contains a declining metapopulation of P. penicillata at the western (inland) extreme of the species’ current range. Loss of these colonies would cause substantial range contraction and probable loss of regional genetic diversity in the Central Evolutionary Significance Unit (ESU). We used non-invasive genetic methods to identify individuals from faecal DNA from five colonies in the Warrumbungle NP. We identified a minimum of 21 individuals, with the largest colony containing seven individuals. The Warrumbungle NP colonies showed significant intercolony structuring and we were able to detect a single dispersal event. Comparison of genetic diversity to other Central ESU colonies shows that loss of the Warrumbungle NP population will result in loss of unique diversity from this region. The minimum number of animals and genetic diversity information obtained in this study was used to support management actions of herbivore control and translocation in the Warrumbungle NP population.

Additional keywords: non-invasive genetic sampling, population structure.


References

Banks, S. C., Piggott, M. P., Hansen, B. D., Robinson, N. A., and Taylor, A. C. (2002). Wombat coprogenetics: enumerating a common wombat population by microsatellite analysis of faecal DNA. Australian Journal of Zoology 50, 193–204.
Wombat coprogenetics: enumerating a common wombat population by microsatellite analysis of faecal DNA.Crossref | GoogleScholarGoogle Scholar |

Browning, T. L., Taggart, D., Rummery, C., Close, R., and Eldridge, M. D. B. (2001). Multifaceted genetic analysis of the ‘critically endangered’ brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management. Conservation Genetics 2, 145–156.
Multifaceted genetic analysis of the ‘critically endangered’ brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGgs74%3D&md5=7abe49d55ee5adcd27008e7022bae059CAS |

De Barba, M., Miquel, C., Lobreaux, S., Quenette, P. Y., Swenson, J. E., and Taberlet, P. (2017). High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization, and success with low-quantity and degraded DNA. Molecular Ecology Resources 17, 492–507.
High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization, and success with low-quantity and degraded DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXnsFCgtLg%3D&md5=3c97b7cdcbb6c569fbaa2d070a9d6b11CAS |

Deuter, R., Pietsch, S., Hertel, S., and Müller, O. (1995). A method for preparation of fecal DNA suitable for PCR. Nucleic Acids Research 23, 3800–3801.
A method for preparation of fecal DNA suitable for PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslynt7k%3D&md5=8908ba775feb52bf6e0b1c716f1cf211CAS |

Eldridge, M. D. B., and Close, R. (2008). Brush-tailed rock-wallaby Petrogale penicillata. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 382–384. (New Holland: Sydney.)

Eldridge, M. D. B., Bell, J. N., and Wong, V. (1997). Confirmation of the continued existence of the brush-tailed rock-wallaby Petrogale penicillata in the Warrumbungles, western New South wales. Australian Mammalogy 20, 111–114.

Eldridge, M. D. B., Kinnear, J., and Onus, M. (2001a). Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data. Molecular Ecology 10, 2867–2876.
Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387nslOlug%3D%3D&md5=987893a5f621650eb212b983aa3da606CAS |

Eldridge, M. D. B., Browning, T. L., and Close, R. (2001b). Provenance of a New Zealand brush-tailed rock-wallaby (Petrogale penicillata) population determined by mitochondrial DNA sequence analysis. Molecular Ecology 10, 2561–2567.
Provenance of a New Zealand brush-tailed rock-wallaby (Petrogale penicillata) population determined by mitochondrial DNA sequence analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Sqt78%3D&md5=f0e79f64515de5c6927b1b37489b8082CAS |

Eldridge, M., Rummery, C., Bray, C., Zenger, K., Browning, T., and Close, R. (2004). Genetic consequences of a population crash in brush-tailed rock-wallabies (Petrogale penicillata) from Jenolan Caves, south-eastern Australia. Wildlife Research 31, 229–240.
Genetic consequences of a population crash in brush-tailed rock-wallabies (Petrogale penicillata) from Jenolan Caves, south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Neaves, L. E., Faris, J., and Soderquist, T. (2017). Genetic affinities of a remnant population of the brush-tailed rock-wallaby (Petrogale penicillata) in Mt Kaputar National Park, northern New South Wales. Australian Mammalogy , .
Genetic affinities of a remnant population of the brush-tailed rock-wallaby (Petrogale penicillata) in Mt Kaputar National Park, northern New South Wales.Crossref | GoogleScholarGoogle Scholar |

Ellegren, H. (1999). Inbreeding and relatedness in Scandinavian grey wolves Canis lupus. Hereditas 130, 239–244.
Inbreeding and relatedness in Scandinavian grey wolves Canis lupus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvjvVGmtg%3D%3D&md5=bee007edd39e9b74835532400392c9d0CAS |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software structure: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=8e51691db7d90a7e983dd05c40726ff0CAS |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| 1:CAS:528:DC%2BD3sXnvF2ntrk%3D&md5=756859baf2b3fbc5a8cea46acd022674CAS |

Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.
FSTAT (version 1.2): a computer program to calculate F-statistics.Crossref | GoogleScholarGoogle Scholar |

Hazlitt, S., Goldizen, A., and Eldridge, M. D. B. (2006). Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia. Conservation Genetics 7, 675–689.
Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWgtLvI&md5=27700f902c3ebc5893f072bfce6b0627CAS |

Hazlitt, S. L., Goldizen, A. W., Nicholls, J. A., and Eldridge, M. D. B. (2014). Three divergent lineages within an Australian marsupial (Petrogale penicillata) suggest multiple major refugia for mesic taxa in southeast Australia. Ecology and Evolution 4, 1102–1116.
Three divergent lineages within an Australian marsupial (Petrogale penicillata) suggest multiple major refugia for mesic taxa in southeast Australia.Crossref | GoogleScholarGoogle Scholar |

Lunney, D., Law, B., and Rummery, C. (1997). An ecological interpretation of the historical decline of the brush-tailed rock-wallaby Petrogale penicillata in New South Wales. Australian Mammalogy 19, 281–296.

Menkhorst, P., and Hynes, E. (2010). National recovery plan for the brush-tailed rock-wallaby Petrogale penicillata. Department of Sustainability and Environment, Melbourne.

Morin, D., Kelly, M., and Waits, L. (2016). Monitoring coyote population dynamics with fecal DNA and spatial capture–recapture. Journal of Wildlife Management 80, 824–836.
Monitoring coyote population dynamics with fecal DNA and spatial capture–recapture.Crossref | GoogleScholarGoogle Scholar |

NPWS (2003). Warrumbungle brush-tailed rock-wallaby endangered population recovery plan. NSW National Parks and Wildlife Service, Sydney.

Ottewell, K., Dunlop, J., Thomas, N., Morris, K., Coates, D., and Byrne, M. (2014). Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biological Conservation 171, 209–219.
Evaluating success of translocations in maintaining genetic diversity in a threatened mammal.Crossref | GoogleScholarGoogle Scholar |

Papalinska, J. (2006). Faecal DNA analysis of Petrogale penicillata in Kangaroo Valley. In ‘Final Report for NSW National Parks and Wildlife Service’. New South Wales National Parks and Wildlife Service, Sydney.

Peakall, R., and Smouse, P. E. (2006). genAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
genAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Petit, R. J., El Mousadik, A., and Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844–855.
Identifying populations for conservation on the basis of genetic markers.Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P. (2004). Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildlife Research 31, 485–493.
Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurnJ&md5=33964725f2533ae287e0a79b20fb57e2CAS |

Piggott, M. P., and Taylor, A. C. (2003a). Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildlife Research 30, 1–13.
Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species.Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P., and Taylor, A. C. (2003b). Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species. Australian Journal of Zoology 51, 341–355.
Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWqtLo%3D&md5=11e07a990acc273ae3f4e01239739236CAS |

Piggott, M. P., Banks, S. C., Stone, N., Banffy, C., and Taylor, A. C. (2006a). Estimating population size of endangered brush-tailed rock-wallaby (Petrogale penicillata) colonies using faecal DNA. Molecular Ecology 15, 81–91.
Estimating population size of endangered brush-tailed rock-wallaby (Petrogale penicillata) colonies using faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGkt74%3D&md5=4de6704455aef0122f8ac96878688671CAS |

Piggott, M. P., Banks, S. C., and Taylor, A. C. (2006b). Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA. Molecular Ecology 15, 93–105.
Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGkt78%3D&md5=a3b0600ac70f48787b84ebbfd097ae75CAS |

Poinar, H. N. (1998). Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406.
Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslansb8%3D&md5=ec37664752e61f52f3cf05f6af691b39CAS |

Potter, S., Eldridge, M. D. B., Cooper, S. J. B., Papalinska, J. Z., and Taggart, D. A. (2012). Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis). Conservation Genetics 13, 937–952.
Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis).Crossref | GoogleScholarGoogle Scholar |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=c98501480ce4134eaa33beab1a13fdddCAS |

Shelley, D. (1993). A 1990–1991 survey of the brush-tailed rock-wallaby in the Warrumbungle National Park, Coonabarabran, in New South Wales. Australian Zoologist 29, 79–85.

Short, J., and Milkovits, G. (1990). Distribution and status of the brush-tailed rock-wallaby in south-eastern Australia. Australian Wildlife Research 17, 169–179.
Distribution and status of the brush-tailed rock-wallaby in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Snyder-Mackler, N., Majoros, W. H., Yuan, M. L., Shaver, A. O., Gordon, J. B., Kopp, G. H., Schlebusch, S. A., Wall, J. D., Alberts, S. C., Mukherjee, S., Zhou, X., and Tung, J. (2016). Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. Genetics 203, 699–714.
Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFSit77I&md5=fbd771bd7e3b371448620e65d23b93fdCAS |

Soderquist, T. (2011). What we don’t know and haven’t learned about cost–benefit prioritisation of rock-wallaby management. Australian Mammalogy 33, 202–213.
What we don’t know and haven’t learned about cost–benefit prioritisation of rock-wallaby management.Crossref | GoogleScholarGoogle Scholar |

Spencer, P. B. S., Odorico, M. D., Jones, S. J., Marsh, H., and Miller, D. J. (1995). Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis). Molecular Ecology 4, 523–525.
Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFertLk%3D&md5=6081a152e90d332efaf0921400ac52d9CAS |

Stenglein, J., Waits, L., Ausbannd, D., Zager, P., and Mack, C. (2011). Estimating gray wolf pack size and family relationships using noninvasive genetic sampling at rendezvous sites. Journal of Mammalogy 92, 784–795.
Estimating gray wolf pack size and family relationships using noninvasive genetic sampling at rendezvous sites.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., Camarra, J. J., Griffin, S., Uhres, E., Hanotte, O., Waits, L. P., Dubois-Paganon, C., Burke, T., and Bouvet, J. (1997). Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology 6, 869–876.
Noninvasive genetic tracking of the endangered Pyrenean brown bear population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1SksLY%3D&md5=5b55f9e615f6bded0691781aefdd10edCAS |

Taberlet, P., Waits, L. P., and Luikart, G. (1999). Noninvasive genetic sampling: look before you leap. Trends in Ecology and Evolution 14, 323–327.
Noninvasive genetic sampling: look before you leap.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbgslWgug%3D%3D&md5=134b6e7860864430a49d8f1cede09cc1CAS |

Taylor, A. C., and Cooper, D. W. (1998). A set of unlinked microsatellites from the Tammar wallaby Macropus eugenii. Molecular Ecology 7, 925–926.
| 1:CAS:528:DyaK1cXlsFKlur4%3D&md5=c9fa45d07fda7ebdeec6dc71f97ea655CAS |

Tuft, K. D., Crowther, M. S., Connell, K., Müller, S., and McArthur, C. (2011a). Predation risk and competitive interactions affect foraging of an endangered refuge-dependent herbivore. Animal Conservation 14, 447–457.
Predation risk and competitive interactions affect foraging of an endangered refuge-dependent herbivore.Crossref | GoogleScholarGoogle Scholar |

Tuft, K. D., Crowther, M. S., and McArthur, C. (2011b). Multiple scales of diet selection by brush-tailed rock-wallabies (Petrogale penicillata). Australian Mammalogy 33, 169–180.
Multiple scales of diet selection by brush-tailed rock-wallabies (Petrogale penicillata).Crossref | GoogleScholarGoogle Scholar |

Tuft, K. D., Crowther, M. S., and McArthur, C. (2012). Fire and grazing influence food resources of an endangered rock-wallaby. Wildlife Research 39, 436–445.
Fire and grazing influence food resources of an endangered rock-wallaby.Crossref | GoogleScholarGoogle Scholar |

Waits, L. P., Luikart, G., and Taberlet, P. (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology 10, 249–256.
Estimating the probability of identity among genotypes in natural populations: cautions and guidelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1ejtbs%3D&md5=edb1baeb314094075c55822b0d96bcbcCAS |

Weeks, A. R., Stoklosa, J., and Hoffmann, A. A. (2016). Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Frontiers in Zoology 13, 31.
Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Wright, S. (1969). ‘Evolution and the Genetics of Populations. Volume 2: Theory of Gene Frequencies.’ (University of Chicago Press: Chicago.)