Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Phylogeny of the rock wallabies, Petrogale (Marsupialia : Macropodidae). Part II: Detection of hybridisation among macropodines

John A. W. Kirsch A , Olivier Gauthier B C , Antoine Campeau-Péloquin B , Mark D. B. Eldridge D and François-Joseph Lapointe B E
+ Author Affiliations
- Author Affiliations

A Deceased. Formerly of The University of Wisconsin Zoological Museum, 250 North Mills Street, Madison, WI 53706, USA.

B Département de sciences biologiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal (Québec), H3C 3J7, Canada.

C Current address: LEMAR UMR 6539 CNRS, IUEM, Université de Bretagne Occidentale, Place Nicolas Copernic, 29280 Plouzané, France.

D Evolutionary Biology Unit, The Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.

E Corresponding author. Email: francois-joseph.lapointe@umontreal.ca

Australian Mammalogy 32(1) 67-75 https://doi.org/10.1071/AM09017
Submitted: 25 June 2009  Accepted: 3 February 2010   Published: 24 March 2010

Abstract

Phylogenetic relationships among rock-wallabies, Petrogale (Marsupialia: Macropodidae), have proven difficult to resolve. Given the documented interspecific hybridisation in the wild and the ease with which hybrids can be bred in captivity, introgression and hybrid speciation are likely explanations for these difficulties. In this paper, an attempt is made at using a phylogenetic approach to identify Petrogale hybrids of known origin. The Hybrid Detection Criterion (HDC) test is applied to DNA–DNA hybridisation data for 15 full species, two natural yard-bred hybrids, and two artificial hybrids from the same pairs of parental species. While the yard-bred hybrids elude detection with this technique, the artificial hybrids, consisting of equimolar mixture of parental extracts, are easily identified. Moreover, splitsgraphs constructed from five pairs of natural and artificial hybrids, including those evaluated with HDC, and their parents show that, in all cases but one, these two kinds of hybrids do not group together. Because the HDC assumes an intermediate phylogenetic position of the hybrid between its postulated parents, it is likely that unequal crossing-over, or another recombination event, affects the results of the test. These conclusions cast some doubt on the possibility of accurately detecting Petrogale hybrids with a phylogenetic approach.

Additional keywords: DNA–DNA hybridisation, Hybrid Detection Criterion, Splitsgraphs.


Acknowledgements

The authors are grateful to all members of the LEMEE for constructive comments on an earlier version of this manuscript. This work was supported by NSERC and FQRNT scholarships to OG, a Faculté des Études supérieures de l’Université de Montréal scholarship to ACP, NSERC grant no. OGP0155251 and FQRNT grant no. PR88559 to FJL, funds from the Australian Research Council and from Macquarie University to MDBE, and by funds for the hybridisation experiments provided by JAWK.


References

Bandelt, H.-J. , and Dress, A. W. M. (1992). Split decomposition: a new and useful approach to phylognetic analysis of distance data. Molecular Phylogenetics and Evolution 1, 242–252.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Felsenstein J. (2005). PHYLIP (Phylogeny Inference Package). Version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

Gauthier O. , and Lapointe F.-J. (2002). A comparison of alternative methods for detecting reticulation events in phylogenetic analysis. In ‘Classification, Clustering, and Data Analysis: Recent Advances and Applications’. (Eds K. Jajuga, A. Sokolowski and H.-H. Bock.) pp. 341–347. (Springer-Verlag: Berlin.)

Gauthier, O. , and Lapointe, F.-J. (2007a). Hybrids and phylogenetics revisited. A statistical test of hybridization using quartets. Systematic Botany 32, 8–15.
Crossref | GoogleScholarGoogle Scholar | Makarenkov V. , and Legendre P. (2000). Improving the additive tree representation of a given dissimilarity matrix using reticulations. In ‘Data Analysis, Classification, and Related Methods’. (Eds H. A. L. Kiers, J. P. Rasson, P. J. F. Groenen and M. Schade.) pp. 35–46. (Springer: Berlin.)

Metcalfe, C. J. , Bulazel, K. V. , Ferreri, G. C. , Schroeder-Reiter, E. , Wanner, G. , Rens, W. , Obergfell, C. , Eldridge, M. D. B. , and O’Neill, R. J. (2007). Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177, 2507–2517.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Nakhleh L. , Warnow T. , and Linder C. R. (2004). Reconstructing reticulate evolution in species – theory and practice. In ‘Proceedings of the Eighth Annual International Conference on Research in Computational Molecular Biology (RECOMB 2004’. (Eds P. E. Bourne and D. Gusfield.) pp. 337–346. (ACM Press: New York.)

Nelson G. J. (1983). Reticulaton in cladograms. In ‘Advances in Cladistics: Proceedings of the Second Meeting of the Willi Hennig Society’. (Eds N. I. Platnick and V. A. Funk.) pp. 105–111. (Columbia University Press: New York.)

O’Neill, R. J. , O’Neill, M. J. , and Graves, J. A. (1998). Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Posada, D. (2002). Evaluation of methods for detecting recombination from DNA sequences: empirical data. Molecular Biology and Evolution 19, 708–717.
CAS | PubMed |

Posada, D. , and Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16, 37–45.
Crossref | GoogleScholarGoogle Scholar |

Springer, M. S. , and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect, and the radiation of diprotodontian marsupials. Systematic Zoology 40, 131–151.
Crossref | GoogleScholarGoogle Scholar |

Than, C. , Ruths, D. , and Nakhleh, L. (2008). PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ungerer, M. C. , Strakosh, S. C. , and Zhen, Y. (2006). Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Current Biology 16, R872–R873.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Willson, S. J. (2008). Reconstruction of certain phylogenetic networks from the genomes at their leaves. Journal of Theoretical Biology 252, 338–349.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Woolley, S. M. , Posasa, D. , and Crandall, K. A. (2008). A comparison of phylogenetic network methods using computer simulation. PLoS ONE 3, e1913.
Crossref | GoogleScholarGoogle Scholar | PubMed |