Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

SIDERITE AS A CONSTRAINT ON DEPOSITIONAL AND EARLY DIAGENETIC HISTORY: EXAMPLES FROM BARROW SUB-BASIN, NORTH WEST SHELF, WESTERN AUSTRALIA

G. M. Kraishan and N. M Lemont

The APPEA Journal 38(1) 238 - 253
Published: 1998

Abstract

Siderite cement is one of the most volumetrically important diagenetic minerals in the Late Triassic to Early Cretaceous sandstones of the Barrow Sub-basin. It constitutes up to 60 per cent of the rock volume, and where abundant, occludes the primary intergranular porosity. Petrogriiphic, chemical and isotopic studies indicate the early precipitation of much of this siderite prior to significant compaction. Siderite samples and concretions were taken from a variety of depositional environments ranging from fluvial to deep marine from Late Triassic to Early Cretaceous sequences.

Of the early phases, three distinct siderite types were recognised and vary according to depositional environment. The first type, mostly collected from fluvial deposits, is Fe-rich with a mean composition of (Fe96.3 Mg1.8 Ca0.9 Mn1.0) C03. The second type of siderite cement is relatively Mg-rich, Ca-poor and has a higher Mn content, with a mean composition of (Fe87.1 Mg9.6 Ca1.2 Mn2.1) C03. The third type of siderite cement is typically Mg−, Ca-rich, with a low Mn content and an average composition of (Fe78.7 Mg12.4 Ca8.4 Mn0.5) C03. The second and third siderite cements occur in marine facies. The δ13C and δ180 values for siderite cements range from −2.8 to −14.3 %. PDB and 17.4 to 28.2 %. SMOW, respectively.

Petrographic and chemical isotopic studies and other sedimentological data from siderite can be used to distinguish between different depositional environments. Chemical and isotopic compositions of the early authigenic siderites indicate precipitation from fluids with significant meteoric input. Siderite cements formed during sulphate reduction and early methanogenesis from mixed marine and meteoric pore-waters at temperatures below 30°C. While an influx of meteoric water to the fluvial and deltaic sediments of the Triassic Mungaroo Formation is easily envisaged, the siderites show that some mixing of sea water is also required. The concept of introduction of meteoric water to the marine sediments of the Birdrong Formation requires an appreciation of the sea level fluctuations at the time. In these situations, the recognition of meteoric or marine input to an early siderite cement can assist in the determination of sea level fluctuations.

https://doi.org/10.1071/AJ97012

© CSIRO 1998

Committee on Publication Ethics


Export Citation Cited By (1)

View Dimensions