Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

HYDROCARBON GENERATION AND EXPULSION FROM EARLY CRETACEOUS SOURCE ROCKS IN THE BROWSE BASIN, NORTH WEST SHELF, AUSTRALIA: A SMALL ANGLE NEUTRON SCATTERING STUDY

A.P. Radlinski, J.M. Kennard, D.S. Edwards, A.L. Hinde and R. Davenport

The APPEA Journal 44(1) 151 - 180
Published: 2004

Abstract

Small Angle Neutron Scattering (SANS) analyses were carried out on 165 potential source rocks of Late Jurassic–Early Cretaceous age from nine wells in the Browse Basin (Adele–1, Argus–1, Brecknock South–1, Brewster–1A, Carbine–1, Crux–1, Dinichthys–1, Gorgonichthys–1 and Titanichthys–1). Samples from Brewster–1A and Dinichthys–1 were also analysed using the Ultra Small Angle Neutron Scattering (USANS) technique.

The SANS/USANS data detect the presence of generated bitumen and mobile hydrocarbons in pores and are pore-size specific. As the pore-size range in mudstones extends from about 0.001–30 μm, the presence of bitumen in the small pores detected by SANS indicates the depth of onset of hydrocarbon generation, whereas the presence of bitumen and mobile hydrocarbons in the largest pores detected by USANS indicates a significant saturation and the onset of expulsion.

Although geochemical data imply the existence of a potential gas and oil source rock in the Lower Cretaceous section (Echuca Shoals and Jamieson Formations), the SANS/USANS data indicate significant generation but little or no expulsion. This source limitation may explain poor exploration success for liquid hydrocarbons in the area. The SANS/USANS data provide evidence of intra- and inter-formational hydrocarbon migration or kerogen kinetics barriers. There is no evidence of an oil charge to the Berriasian Brewster Sandstone from the Echuca Shoals Formation, although some gas charge in Brewster–1A is possible. This novel microstructural technique can be used to independently calibrate and refine source rock generation/expulsion scenarios derived from geochemistry modelling.

https://doi.org/10.1071/AJ03005

© CSIRO 2004

Committee on Publication Ethics


Export Citation

View Dimensions