Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

CARNARVON BASIN ARCHITECTURE AND STRUCTURE DEFINED BY THE INTEGRATION OF MINERAL AND PETROLEUM EXPLORATION TOOLS AND TECHNIQUES

L.L. Pryer, K.K. Romine, T.S. Loutit and R.G. Barnes

The APPEA Journal 42(1) 287 - 309
Published: 2002

Abstract

The Barrow and Dampier Sub-basins of the Northern Carnarvon Basin developed by repeated reactivation of long-lived basement structures during Palaeozoic and Mesozoic tectonism. Inherited basement fabric specific to the terranes and mobile belts in the region comprise northwest, northeast, and north–south-trending Archaean and Proterozoic structures. Reactivation of these structures controlled the shape of the sub-basin depocentres and basement topography, and determined the orientation and style of structures in the sediments.

The Lewis Trough is localised over a reactivated NEtrending former strike-slip zone, the North West Shelf (NWS) Megashear. The inboard Dampier Sub-basin reflects the influence of the fabric of the underlying Pilbara Craton. Proterozoic mobile belts underlie the Barrow Sub-basin where basement fabric is dominated by two structural trends, NE-trending Megashear structures offset sinistrally by NS-trending Pinjarra structures.

The present-day geometry and basement topography of the basins is the result of accumulated deformation produced by three main tectonic phases. Regional NESW extension in the Devonian produced sinistral strikeslip on NE-trending Megashear structures. Large Devonian-Carboniferous pull-apart basins were introduced in the Barrow Sub-basin where Megashear structures stepped to the left and are responsible for the major structural differences between the Barrow and Dampier Sub-basins. Northwest extension in the Late Carboniferous to Early Permian marks the main extensional phase with extreme crustal attenuation. The majority of the Northern Carnarvon basin sediments were deposited during this extensional basin phase and the subsequent Triassic sag phase. Jurassic extension reactivated Permian faults during renewed NW extension. A change in extension direction occurred prior to Cretaceous sea floor spreading, manifest in basement block rotation concentrated in the Tithonian. This event changed the shape and size of basin compartments and altered fluid migration pathways.

The currently mapped structural trends, compartment size and shape of the Barrow and Dampier Sub-basins of the Northern Carnarvon Basin reflect the “character” of the basement beneath and surrounding each of the subbasins.

Basement character is defined by the composition, lithology, structure, grain, fabric, rheology and regolith of each basement terrane beneath or surrounding the target basins. Basement character can be discriminated and mapped with mineral exploration methods that use non-seismic data such as gravity, magnetics and bathymetry, and then calibrated with available seismic and well datasets. A range of remote sensing and geophysical datasets were systematically calibrated, integrated and interpreted starting at a scale of about 1:1.5 million (covering much of Western Australia) and progressing to scales of about 1:250,000 in the sub-basins. The interpretation produced a new view of the basement geology of the region and its influence on basin architecture and fill history. The bottom-up or basement-first interpretation process complements the more traditional top-down seismic and well-driven exploration methods, providing a consistent map-based regional structural model that constrains structural interpretation of seismic data.

The combination of non-seismic and seismic data provides a powerful tool for mapping basement architecture (SEEBASE™: Structurally Enhanced view of Economic Basement); basement-involved faults (trap type and size); intra-sedimentary geology (igneous bodies, basement-detached faults, basin floor fans); primary fluid focussing and migration pathways and paleo-river drainage patterns, sediment composition and lithology.

https://doi.org/10.1071/AJ01016

© CSIRO 2002

Committee on Publication Ethics


Export Citation

View Dimensions