Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Feeding and the salivary gland response in free-ranging yellow-winged grasshoppers (Gastrimargus musicus)

O. Nurul Wahida A B and Paul D. Cooper A C
+ Author Affiliations
- Author Affiliations

A Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.

B Present address: Centre for Insect Systematics, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

C Corresponding author. Email: paul.cooper@anu.edu.au

Australian Journal of Zoology 62(5) 393-400 https://doi.org/10.1071/ZO14068
Submitted: 15 August 2014  Accepted: 26 October 2014   Published: 20 November 2014

Abstract

Yellow-winged grasshoppers (Gastrimargus musicus) were captured in the field to examine the morphology and amine immunohistochemistry of their salivary glands. Fifty-eight grasshoppers were collected, with only five being males. Eight of 53 female grasshoppers had food in their crop, and the salivary glands of those insects were significantly heavier than those of grasshoppers without food in their crops. The salivary gland of the yellow-winged grasshopper was an acinar-type gland, similar to gland descriptions for other Orthoptera. The primary secretory part of acini of each gland is composed of zymogen and parietal cells. Staining patterns indicated that serotonin and dopamine could act as neurotransmitters and/or neurohormones to stimulate the glands. The pattern of staining of serotonin in the salivary gland suggested that serotonin stimulates both zymogen and parietal cells. Only the parietal cells were positively stained with dopamine. Comparing staining of glands of grasshoppers with food in their crop with the glands of grasshoppers with empty crops suggested a reduction in staining for serotonin in the latter. The differential staining pattern suggests that these amines have different roles in the salivary gland of G. musicus. The lack of difference in structure but increased mass with feeding suggests that all glands were active, but that secretion was actively occurring only in animals with the heavier glands.


References

Ali, D. W., and Orchard, I. (1994). Characterization of dopamine and serotonin receptors on the salivary glands of the locust, Locusta migratoria. Biogenic Amines 10, 195–212.
| 1:CAS:528:DyaK2cXivFCnu7Y%3D&md5=836de1ba588382f4f3e0b097f7bf5d01CAS |

Ali, D. W., and Orchard, I. (1996a). Immunohistochemical localization of tyrosine hydroxylase in the ventral nerve cord of the stick insect, Carausius morosus, including neurons innervating the salivary glands. Cell and Tissue Research 285, 453–462.
Immunohistochemical localization of tyrosine hydroxylase in the ventral nerve cord of the stick insect, Carausius morosus, including neurons innervating the salivary glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Sqt7g%3D&md5=5b89fa01db840269b642be89ce697b2bCAS |

Ali, D. W., and Orchard, I. (1996b). The uptake and release of serotonin and dopamine associated with locust (Locusta migratoria) salivary glands. The Journal of Experimental Biology 199, 699–709.
| 1:CAS:528:DyaK28Xitl2murw%3D&md5=d34b1de613321ba21bd0eb97ddd8ca25CAS |

Ali, D. W., Orchard, I., and Lange, A. B. (1993). The aminergic control of locust (Locusta migratoria) salivary glands: evidence for dopaminergic and serotonergic innervation. Journal of Insect Physiology 39, 623–632.
The aminergic control of locust (Locusta migratoria) salivary glands: evidence for dopaminergic and serotonergic innervation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlSitLY%3D&md5=9ba9dca866dcfa43dd04215672505047CAS |

Baines, R. A., and Tyrer, N. M. (1989). The innervation of locust salivary glands. II. Physiology of excitation and modulation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 165, 407–413.
The innervation of locust salivary glands. II. Physiology of excitation and modulation.Crossref | GoogleScholarGoogle Scholar |

Baines, R. A., Tyrer, N. M., and Mason, J. C. (1989). The innervation of locust salivary glands. I. Innervation and analysis of transmitters. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 165, 395–405.
The innervation of locust salivary glands. I. Innervation and analysis of transmitters.Crossref | GoogleScholarGoogle Scholar |

Baumann, O., Dames, P., Kühnel, D., and Walz, B. (2002). Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana. BMC Physiology 2, 1–15.
Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana.Crossref | GoogleScholarGoogle Scholar |

Baumann, O., Kühnel, D., Dames, P., and Walz, B. (2004). Dopaminergic and serotonergic innervation of cockroach salivary glands: distribution and morphology of synapses and release sites. The Journal of Experimental Biology 207, 2565–2575.
Dopaminergic and serotonergic innervation of cockroach salivary glands: distribution and morphology of synapses and release sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFOht7g%3D&md5=5004e4f997daf922240205a82a2295afCAS | 15201289PubMed |

Beams, H. W., and King, R. L. (1932). The architecture of the parietal cells of the salivary glands of the grasshopper, with special reference to the intracellular canaliculi, Golgi bodies, and mitochondria. Journal of Morphology 53, 223–241.
The architecture of the parietal cells of the salivary glands of the grasshopper, with special reference to the intracellular canaliculi, Golgi bodies, and mitochondria.Crossref | GoogleScholarGoogle Scholar |

Chappell, M. (1983). Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia 56, 126–131.
Metabolism and thermoregulation in desert and montane grasshoppers.Crossref | GoogleScholarGoogle Scholar |

Cooper, P. D., and Vulcano, R. (1997). Regulation of pH in the digestive system of the cricket, Teleogryllus commodus Walker. Journal of Insect Physiology 43, 495–499.
Regulation of pH in the digestive system of the cricket, Teleogryllus commodus Walker.Crossref | GoogleScholarGoogle Scholar |

Dunham, A. E., Grant, B. W., and Overall, K. L. (1989). Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiological Zoology 62, 335–355.

Harrison, J. F., and Fewell, J. H. (1995). Thermal effects on feeding behavior and net energy intake in a grasshopper experiencing large diurnal fluctuations in body temperature. Physiological Zoology 68, 453–473.

Hochuli, D. F., Roberts, B., and Sanson, G. D. (1992). Anteriorly directed microspines in the foregut of Locusta migratoria (Orthoptera: Acrididae). International Journal of Insect Morphology & Embryology 21, 95–97.
Anteriorly directed microspines in the foregut of Locusta migratoria (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

House, C. R., and Ginsborg, B. L. (1985). Salivary gland. In ‘Comprehensive Insect Physiology Biochemistry and Pharmacology. Vol. 11’. (Eds G. A. Kerkut and L. I. Gilbert.) pp. 195–224. (Pergamon Press: Oxford.)

Just, F., and Walz, B. (1994). Salivary glands of the cockroach, Periplaneta americana: new data from light and electron microscopy. Journal of Morphology 220, 35–46.
Salivary glands of the cockroach, Periplaneta americana: new data from light and electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3ptlehtQ%3D%3D&md5=6fe6b83bbd91451c02bc6927e4088e73CAS | 8021947PubMed |

Just, F., and Walz, B. (1996). The effects of serotonin and dopamine on salivary secretion by isolated cockroach salivary glands. The Journal of Experimental Biology 199, 407–413.
| 1:CAS:528:DyaK28Xhslyhsr4%3D&md5=a06fe7e600ff1dfad7ff6bfb6edab35aCAS | 9318035PubMed |

Kendall, M. D. (1969). The fine structure of the salivary glands of the desert locust Scistocerca gregaria Forskal. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 98, 399–420.
The fine structure of the salivary glands of the desert locust Scistocerca gregaria Forskal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c%2Fjt1ChtQ%3D%3D&md5=edbc37dbe02740f370cb085cad89a337CAS | 4900456PubMed |

Kirby, P., Beck, R., and Clarke, K. U. (1984). The stomatogastric nervous system of the house cricket Acheta domesticus L. I. The anatomy of the system and the innervation of the gut. Journal of Morphology 180, 81–103.
The stomatogastric nervous system of the house cricket Acheta domesticus L. I. The anatomy of the system and the innervation of the gut.Crossref | GoogleScholarGoogle Scholar |

Lauverjat, S. (1972). Rôle des cellules zymogènes dans les sécrétions salivaires de Locusta migratoria (Orthoptére, Acridoidea). Tissue & Cell 4, 301–309.
Rôle des cellules zymogènes dans les sécrétions salivaires de Locusta migratoria (Orthoptére, Acridoidea).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c3mtFKnsw%3D%3D&md5=29a52052015a62f4aee12ef54de85e80CAS |

Miller, G. A., Clissold, F., Mayntz, D., and Simpson, S. J. (2009). Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization. Proceedings of the Royal Society B: Biological Sciences 276, 3581–3589.
Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization.Crossref | GoogleScholarGoogle Scholar | 19625322PubMed |

Peters, B. H., Butler, S. V., and Tyrer, N. M. (1987). Morphology, ultrastructure and synapse distribution of putative serotonergic salivary neurons in the locust. Neuroscience 23, 705–719.
Morphology, ultrastructure and synapse distribution of putative serotonergic salivary neurons in the locust.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7ktlerug%3D%3D&md5=5733d41d6006bf37f1c8716ecda019dfCAS | 3437985PubMed |

Roeder, T. (2005). Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology 50, 447–477.
Tyramine and octopamine: ruling behavior and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtLc%3D&md5=3bef42c1d3066f89de7c5a786b8c7926CAS | 15355245PubMed |

Schachtner, J., and Bräunig, P. (1995). Activity pattern of subesophageal ganglion cells innervating the salivary glands of the locust Locusta migratoria. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 176, 491–501.
Activity pattern of subesophageal ganglion cells innervating the salivary glands of the locust Locusta migratoria.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cvovFWjsQ%3D%3D&md5=cafdf4397c4e491be9e77fe9786a7e72CAS |

Simpson, S. J. (2013). Mouthparts and feeding. In ‘The Insects. Structure and Function.’ 5th edn. (Eds S. J. Simpson and A. E. Douglas.) pp. 15–45. (Cambridge University Press: Cambridge.)

Veelaert, D., Schoofs, L., Proost, P., Vandamme, J., Devreese, B., Vanbeeumen, J., and Deloof, A. (1995). Isolation and identification of Lom-SG-SASP, a salivation stimulating peptide from the salivary glands of Locusta migratoria. Regulatory Peptides 57, 221–226.
Isolation and identification of Lom-SG-SASP, a salivation stimulating peptide from the salivary glands of Locusta migratoria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVeku7c%3D&md5=1d4292bcf5ab999eebad6855ce3a1c2eCAS | 7480871PubMed |

Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H.-J., Blenau, W., and Broeck, J. V. (2010). The role of octopamine in locusts and other arthropods. Journal of Insect Physiology 56, 854–867.
The role of octopamine in locusts and other arthropods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWlsbg%3D&md5=6f6f27dfb8e9f743f48d22361c34176dCAS | 20621695PubMed |

Walz, B., Baumann, O., Krach, C., Baumann, A., and Blenau, W. (2006). The aminergic control of cockroach salivary glands. Archives of Insect Biochemistry and Physiology 62, 141–152.
The aminergic control of cockroach salivary glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFOktbc%3D&md5=bfda4bcc4be3aac4fd912166cebed397CAS | 16783825PubMed |

Woodring, J., Diersch, S., Lwalaba, D., Hoffmann, K. H., and Meyering-Vos, M. (2009). Control of the release of digestive enzymes in the caeca of the cricket Gryllus bimaculatus. Physiological Entomology 34, 144–151.
Control of the release of digestive enzymes in the caeca of the cricket Gryllus bimaculatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVaisLg%3D&md5=4be38bb5c3b43524cc00011b1c6ba98dCAS |

Yang, Y., and Joern, A. (1994). Influence of diet quality, developmental stage, and temperature on food residence time in the grasshopper Melanopus differentialis. Physiological Zoology 67, 598–616.