Conservation genetics of the water mouse, Xeromys myoides Thomas, 1889
David Benfer A E , Andrew M. Baker A , Tina Ball B , Ian Gynther C , Heather Janetzki D and Susan Fuller AA Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
B Department of National Parks, Recreation, Sport and Racing, PO Box 623, Mackay, Qld 4740, Australia.
C Threatened Species Unit, Department of Environment and Heritage Protection, PO Box 64, Bellbowrie, Qld 4070, Australia.
D Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Qld 4101, Australia.
E Corresponding author. Email: d.benfer@qut.edu.au
Australian Journal of Zoology 62(5) 382-392 https://doi.org/10.1071/ZO14019
Submitted: 14 March 2014 Accepted: 20 October 2014 Published: 17 November 2014
Abstract
The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.
References
Aplin, K. (2006). Ten million years of rodent evolution in Australasia: phylogenetic evidence and a speculative historical biogeography. In ‘Evolution and Biogeography of Australasian Vertebrates’. (Eds J. R. Merrick, M. Archer, G. M. Hickey and M. S. Y. Lee.) pp. 707–744. (Auscipub: Sydney.)Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.
Ball, D. (2004). Distribution and habitat of the false water rat, Xeromys myoides Thomas, 1889 (Rodentia: Muridae) in intertidal areas of central eastern Queensland. Memoirs of the Queensland Museum 49, 487–494.
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhomme, F. (1996). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université Montpellier II, Montpellier, France.
Breed, W. G., and Aplin, K. (2008). Family Muridae. In ‘The Mammals of Australia’. (Eds S. Van Dyck and R. Strahan.) pp. 575–576. (New Holland Publishers: Sydney.)
Bryant, L. M., Donnellan, S. C., Hurwood, D. A., and Fuller, S. J. (2011). Phylogenetic relationships and divergence date estimates among Australo‐Papuan mosaic‐tailed rats from the Uromys division (Rodentia: Muridae). Zoologica Scripta 40, 433–447.
| Phylogenetic relationships and divergence date estimates among Australo‐Papuan mosaic‐tailed rats from the Uromys division (Rodentia: Muridae).Crossref | GoogleScholarGoogle Scholar |
Campbell, N. J. H., Harriss, F. C., Elphinstone, M. S., and Baverstock, P. R. (1995). Outgroup heteroduplex analysis using temperature gradient gel electrophoresis: high resolution, large scale screening of DNA variation in the mitochondrial control region. Molecular Ecology 4, 407–418.
| 1:CAS:528:DyaK2MXosFert70%3D&md5=35474ea65f0f5c465d8464616c9bdc3aCAS |
Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
| TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=b524c7fe7b62c47bd07eb7088516f4dcCAS | 11050560PubMed |
Cornuet, J. M., and Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.
| 1:STN:280:DyaK2s7jt1Kgsw%3D%3D&md5=e8a0b7624391d8e272648b95a9c8f441CAS | 8978083PubMed |
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=a5050f6d79f3b4c4becd6dece010bd3cCAS | 22847109PubMed |
Department of Environment and Resource Management [DERM] (2010). National recovery plan for the water mouse (false water rat) Xeromys myoides. Report to Department of Sustainability, Environment, Water, Population and Communities, Canberra. DERM, Brisbane.
Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
| STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |
Ellegren, H., Hartman, G., Johansson, M., and Andersson, L. (1993). Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proceedings of the National Academy of Sciences of the United States of America 90, 8150–8153.
| Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsl2jsL0%3D&md5=0dd79f5a3beb9f4461c0e19efe748eb9CAS | 8367476PubMed |
Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
| Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=eb59ed4aa80797d01ea0ca7504502ccfCAS | 15969739PubMed |
Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=45c8fbc96509aaf82c5e025c3f1b6328CAS |
Faircloth, B. C. (2008). MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus‐specific primer design. Molecular Ecology Resources 8, 92–94.
| MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus‐specific primer design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVSitL8%3D&md5=c1f50fa00275e3ebe4f82f1f525f666bCAS | 21585724PubMed |
Frankham, R. (2005). Genetics and extinction. Biological Conservation 126, 131–140.
| Genetics and extinction.Crossref | GoogleScholarGoogle Scholar |
Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
| Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar | 21486369PubMed |
Geyer, C. J. (1991). Markov Chain Monte Carlo maximum likelihood. In ‘Computer Science and Statistics: Proceedings of the 23rd Symposium on the Interface’. (Ed. E. M. Kerimidas.) pp. 156–163. (Interface Foundation: Fairfax Station, VA.)
Gibbard, P. L., Head, M. J., and Walker, M. J. (2010). Formal ratification of the Quaternary system/period and the Pleistocene series/epoch with a base at 2.58 Ma. Journal of Quaternary Science 25, 96–102.
| Formal ratification of the Quaternary system/period and the Pleistocene series/epoch with a base at 2.58 Ma.Crossref | GoogleScholarGoogle Scholar |
Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.
Guindon, S., and Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
| A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |
Gutierrez-Espeleta, G. A., Hedrick, P. W., Kalinowski, S. T., Garrigan, D., and Boyce, W. M. (2001). Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation? Heredity 86, 439–450.
| Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVyjsLg%3D&md5=b2d0b1aae4cd5bec7bd7243f4bbba0a3CAS | 11520344PubMed |
Gynther, I. (2011). Distribution and ecology of the water mouse Xeromys myoides on Bribie Island, south-eastern Queensland. Proceedings of the Royal Society of Queensland 117, 275–296.
Gynther, I., and Janetzki, H. (2008). The water mouse (Xeromys myoides). In ‘The Mammals of Australia’. (Eds S. Van Dyck and R. Strahan.) pp. 664–666. (New Holland Publishers: Sydney.)
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In ‘Nucleic Acids Symposium Series.’ pp. 95–98.
Helgen, K. M., and Helgen, L. E. (2009). Biodiversity and biogeography of the moss-mice of New Guinea: a taxonomic revision of Pseudohydromys (Muridae: Murinae). Bulletin of the American Museum of Natural History 331, 230–313.
| Biodiversity and biogeography of the moss-mice of New Guinea: a taxonomic revision of Pseudohydromys (Muridae: Murinae).Crossref | GoogleScholarGoogle Scholar |
Hitchcock, G. (1998). First record of the false water-rat Xeromys myoides (Rodentia: Muridae), in New Guinea. Science in New Guinea 23, 141–144.
Ingvarsson, P. K. (2001). Restoration of genetic variation lost – the genetic rescue hypothesis. Trends in Ecology & Evolution 16, 62–63.
| Restoration of genetic variation lost – the genetic rescue hypothesis.Crossref | GoogleScholarGoogle Scholar |
Jakobsson, M., and Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.
| CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ahtbs%3D&md5=61c992f921bfe68f428dc45a18b23044CAS | 17485429PubMed |
Kingman, J. F. C. (1982). On the genealogy of large populations. Journal of Applied Probability 19, 27–43.
| On the genealogy of large populations.Crossref | GoogleScholarGoogle Scholar |
Lacy, R. C. (1987). Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology 1, 143–158.
| Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision.Crossref | GoogleScholarGoogle Scholar |
Magnusson, W., Webb, G., and Taylor, J. A. (1976). Two new locality records, a new habitat and a nest description for Xeromys myoides Thomas (Rodentia: Muridae). Wildlife Research 3, 153–157.
| Two new locality records, a new habitat and a nest description for Xeromys myoides Thomas (Rodentia: Muridae).Crossref | GoogleScholarGoogle Scholar |
Meyer, A., Kocher, T. D., Basasibwaki, P., and Wilson, A. C. (1990). Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347, 550–553.
| 1:CAS:528:DyaK3cXmt1yhs7w%3D&md5=38178c01ba587e954486b35fc1ce4437CAS | 2215680PubMed |
Miller, S., Dykes, D., and Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215.
| A simple salting out procedure for extracting DNA from human nucleated cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVKlsrs%3D&md5=fbf7b5ef8f4ffb13951f46efc924912cCAS | 3344216PubMed |
Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
| Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=807e9b1c6637836734c00157ce889224CAS |
Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51, 238–254.
| Strategies to protect biological diversity and the evolutionary processes that sustain it.Crossref | GoogleScholarGoogle Scholar | 12028731PubMed |
Musser, G., and Carleton, M. (2005). Superfamily Muroidea. In ‘Mammal Species of the World: a Taxonomic and Geographic Reference’. (Eds D. E. Wilson and D. M. Reeder.) pp. 894–1531. (Johns Hopkins University Press: Baltimore, MD.)
O’Grady, J. J., Brook, B. W., Reed, D. H., Ballou, J. D., Tonkyn, D. W., and Frankham, R. (2006). Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation 133, 42–51.
| Realistic levels of inbreeding depression strongly affect extinction risk in wild populations.Crossref | GoogleScholarGoogle Scholar |
Piry, S., Luikart, G., and Cornuet, J. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. The Journal of Heredity 90, 502–503.
| BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data.Crossref | GoogleScholarGoogle Scholar |
Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=abf0aa80c117c442e1137ae79fc63099CAS | 10835412PubMed |
QGC (2013). Environmental management plan – water mouse (Xeromys myoides). Revision 6.
Rambaut, A. (2012). FigTree v1.4. Published by the author.
Raymond, M., and Rousset, F. (1995). GENEPOP (version 4.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.
Redhead, T., and McKean, J. L. (1975). A new record of the false water-rat, Xeromys myoides, from the Northern Territory of Australia. Journal of the Australian Mammal Society 1, 347–354.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |
Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137–138.
| DISTRUCT: a program for the graphical display of population structure.Crossref | GoogleScholarGoogle Scholar |
Rousset, F. (2008). GENEPOP’007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8, 103–106.
| GENEPOP’007: a complete re‐implementation of the GENEPOP software for Windows and Linux.Crossref | GoogleScholarGoogle Scholar | 21585727PubMed |
Rowe, K. C., Reno, M. L., Richmond, D. M., Adkins, R. M., and Steppan, S. J. (2008). Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Molecular Phylogenetics and Evolution 47, 84–101.
| Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktV2jtLo%3D&md5=1dbaf6ee45a7caf6e4fee2cb3340f729CAS | 18313945PubMed |
Rowe, K. M. C., Rowe, K. C., Elphinstone, M. S., and Baverstock, P. R. (2011). Population structure, timing of divergence and contact between lineages in the endangered Hastings River mouse (Pseudomys oralis). Australian Journal of Zoology 59, 186–200.
| Population structure, timing of divergence and contact between lineages in the endangered Hastings River mouse (Pseudomys oralis).Crossref | GoogleScholarGoogle Scholar |
Russell, T. L., and Hale, P. T. (2009). Conservation of the false water rat (Xeromys myoides) depends on landscape complementation. Australian Mammalogy 31, 81–87.
| Conservation of the false water rat (Xeromys myoides) depends on landscape complementation.Crossref | GoogleScholarGoogle Scholar |
Selkoe, K. A., and Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615–629.
| Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 16643306PubMed |
Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279.
| Isolation by distance in equilibrium and non-equilibrium populations.Crossref | GoogleScholarGoogle Scholar |
Spielman, D., Brook, B. W., Frankham, R., and Schaal, B. A. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America 101, 15 261–15 264.
| Most species are not driven to extinction before genetic factors impact them.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSgu7k%3D&md5=bb11cdedef4621a9bfec8c75ee2be030CAS |
Swann, C. A., Cooper, S. J., and Breed, W. G. (2007). Molecular evolution of the carboxy terminal region of the zona pellucida 3 glycoprotein in murine rodents. Reproduction 133, 697–708.
| Molecular evolution of the carboxy terminal region of the zona pellucida 3 glycoprotein in murine rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku7w%3D&md5=35222e1e532d86140d65d9bac761359fCAS | 17504914PubMed |
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
| MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=e841dcb65bf5743a3261692bb5310fe6CAS | 21546353PubMed |
Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.
| 1:CAS:528:DyaK3sXhslSrsQ%3D%3D&md5=66386a9bee3d7a95d2323d26aa17cfe5CAS | 1385266PubMed |
Torgersen, T., Luly, J., De Deckker, P., Jones, M., Searle, D., Chivas, A., and Ullman, W. (1988). Late Quaternary environments of the Carpentaria Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 67, 245–261.
| Late Quaternary environments of the Carpentaria Basin, Australia.Crossref | GoogleScholarGoogle Scholar |
Valiela, I., Bowen, J. L., and York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51, 807–815.
| Mangrove forests: one of the world’s threatened major tropical environments.Crossref | GoogleScholarGoogle Scholar |
Van Dyck, S. (1996). Xeromys myoides Thomas, 1889 (Rodentia: Muridae) in mangrove communities of North Stradbroke Island, southeast Queensland. Memoirs of the Queensland Museum 42, 337–366.
Van Dyck, S., and Durbidge, E. (1992). A nesting community of false water rats (Xeromys myoides) on the Myora sedgelands, North Stradbroke Island. Memoirs of the Queensland Museum 32, 374.
Van Dyck, S., and Gynther, I. (2003). Nesting strategies of the water mouse Xeromys myoides in southeast Queensland. Memoirs of the Queensland Museum 49, 453–480.
Van Dyck, S., and Gynther, I. (2012). Water Mouse Xeromys myoides. In ‘Queensland’s threatened animals’. (Eds L. K. Curtis, A. J. Dennis, K. R. McDonald, P. M. Kyne and S. J. S. Debus.) pp. 408–409. (CSIRO: Canberra.)
Van Dyck, S., Baker, W., and Gillette, D. (1979). The false water rat, Xeromys myoides on Stradbroke Island, a new locality in southeastern Queensland. Proceedings of the Royal Society of Queensland 90, 84.
Van Dyck, S., Janetzki, H., Amey, A., Sherman-Hayes, L., Baker, A., Cox, T., Frost, A., and Avern, P. (2006). Mangroves, mansions and mice – the demise of a population of water mice (Xeromys myoides) adjacent to a Gold Coast canal housing development. Australian Mammal Society Newsletter, October 2006, No. 65.
Woinarski, J., Brennan, K., Dee, A., Njudumul, J., Guthayguthay, P., and Horner, P. (2000). Further records of the false water-rat Xeromys myoides from coastal Northern Territory. Australian Mammalogy 21, 245–247.
Wright, S. (1943). Isolation by distance. Genetics 28, 114–138.
| 1:STN:280:DC%2BD2s%2FmsFSmsg%3D%3D&md5=491633a44fb61bb3f2a70f6fc4b2ee7aCAS | 17247074PubMed |
Wright, S. (1949). The genetical structure of populations. Annals of Human Genetics 15, 323–354.