Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). IV. Multifaceted study of the brachyotis group identifies additional taxa
Sally Potter A B C G , Robert L. Close D , David A. Taggart B , Steven J. B. Cooper B E and Mark D. B. Eldridge A FA Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.
B Australian Centre for Evolutionary Biology and Biodiversity and School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
C Present address: Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, ACT 2601, Australia.
D School of Science and Health, University of Western Sydney, Penrith, NSW 2751, Australia.
E Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia.
F Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
G Corresponding author. Email: sally.potter@anu.edu.au
Australian Journal of Zoology 62(5) 401-414 https://doi.org/10.1071/ZO13095
Submitted: 1 November 2013 Accepted: 25 November 2014 Published: 22 December 2014
Abstract
Defining taxonomic units is an important component of understanding how biodiversity has formed, and in guiding efforts to sustain it. Understanding patterns of biodiversity across the monsoonal tropics of northern Australia is limited, with molecular technology revealing deep phylogenetic structure and complex evolutionary histories. The brachyotis group of rock-wallabies (Petrogale spp.), which currently consists of three species (Petrogale brachyotis, P. burbidgei and P. concinna) distributed across north-western Australia, provides an example where current taxonomy does not reflect the true diversity or phylogenetic relationships within the group. We have used an integrative approach, combining morphological data, together with DNA sequences (~1000 bp mitochondrial DNA; ~3000 bp nuclear DNA) to resolve relationships within P. brachyotis. Phylogenetic and morphological analyses indicated that P. brachyotis (sensu lato) represents at least two separate species: P. brachyotis (sensu stricto) from the Kimberley and western Northern Territory, and P. wilkinsi from the northern and eastern Northern Territory. Petrogale brachyotis (sensu stricto) can be separated on genetic and morphological evidence into two subspecies: P. b. brachyotis and P. b. victoriae (subsp. nov.). Distinct genetic lineages have also been identified within both P. brachyotis and P. wilkinsi, as well as within P. burbidgei and P. concinna.
Additional keywords: marsupial, mitochondrial DNA, morphology, northern Australia, nuclear, phylogenetics.
References
Bell, J. N., Close, R. L., and Johnson, P. M. (1989). Testicular development in the allied rock-wallaby P. assimilis. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. D. Hume.) pp. 419–422. (Surrey Beatty: Sydney.)Briscoe, D. A., Calaby, J. H., Close, R. L., Maynes, G. M., Murtagh, C. M., and Sharman, G. B. (1982). Isolation, introgression and genetic variation in rock-wallabies. In ‘Species at Risk: Research in Australia’. (Eds R. H. Groves and W. D. L. Ride.) pp. 73–87. (Australian Academy of Science: Canberra.)
Browning, T. L., Taggart, D. A., Rummery, C., Close, R. L., and Eldridge, M. D. B. (2001). Multifaceted genetic analysis of the critically endangered brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management. Conservation Genetics 2, 145–156.
| Multifaceted genetic analysis of the critically endangered brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGgs74%3D&md5=a0de0617cd60e525749a494e644ec4aaCAS | 1:CAS:528:DC%2BD3MXotFGgs74%3D&md5=a0de0617cd60e525749a494e644ec4aaCAS |
Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
| How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar | 23855767PubMed |
Catullo, R. A., Lanfear, R., Doughty, P., and Keogh, J. S. (2014). The biogeographical boundaries of northern Australia: evidence from ecological niche models and a multi-locus phylogeny of Uperoleia toadlets (Anura: Myobatrachidae). Journal of Biogeography 41, 659–672.
Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407–415.
| Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |
De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
| Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |
Delaney, R., and Marsh, H. (1995). Estimating the age of wild rock-wallabies by dental radiography: a basis for quantifying the age structure of a discrete colony of Petrogale assimilis. Wildlife Research 22, 547–559.
| Estimating the age of wild rock-wallabies by dental radiography: a basis for quantifying the age structure of a discrete colony of Petrogale assimilis.Crossref | GoogleScholarGoogle Scholar |
Eldridge, M. D. B. (1997). Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). II. An historical review. Australian Mammalogy 19, 113–122.
Eldridge, M. D. B., and Close, R. L. (1992). Taxonomy of rock wallabies, Petrogale (Marsupialia: Macropodidae). I. A revision of the eastern Petrogale with the description of three new species. Australian Journal of Zoology 40, 605–625.
| Taxonomy of rock wallabies, Petrogale (Marsupialia: Macropodidae). I. A revision of the eastern Petrogale with the description of three new species.Crossref | GoogleScholarGoogle Scholar |
Eldridge, M. D. B., and Close, R. L. (1993). Radiation of chromosome shuffles. Current Opinion in Genetics & Development 3, 915–922.
| Radiation of chromosome shuffles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlOis7w%3D&md5=4f8a29ae8eeacce81fd447192753f095CAS | 1:CAS:528:DyaK2cXitlOis7w%3D&md5=4f8a29ae8eeacce81fd447192753f095CAS |
Eldridge, M. D. B., and Close, R. L. (1997). Chromosomes and evolution in rock-wallabies, Petrogale (Marsupialia: Macropodidae). Australian Mammalogy 19, 123–135.
Eldridge, M. D. B., and Telfer, W. (2008). Short-eared rock-wallaby Petrogale brachyotis. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 365–366. (New Holland: Sydney.)
Eldridge, M. D. B., Johnston, P. G., and Lowry, P. S. (1992). Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VII. G-banding analysis of Petrogale brachyotis and P. concinna: species with dramatically altered karyotypes. Cytogenetics and Cell Genetics 61, 34–39.
| Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VII. G-banding analysis of Petrogale brachyotis and P. concinna: species with dramatically altered karyotypes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zntFSguw%3D%3D&md5=8ed58634bffdab0735a24609a0c6aab0CAS | 1:STN:280:DyaK38zntFSguw%3D%3D&md5=8ed58634bffdab0735a24609a0c6aab0CAS |
Eldridge, M. D. B., Wilson, A. C. C., Metcalfe, C. J., Dollin, A. E., Bell, J. N., Johnson, P. M., Johnston, P. G., and Close, R. L. (2001). Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). III. Molecular data confirm the species status of the purple-necked rock-wallaby (Petrogale purpureicollis Le Souef). Australian Journal of Zoology 49, 323–343.
| Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). III. Molecular data confirm the species status of the purple-necked rock-wallaby (Petrogale purpureicollis Le Souef).Crossref | GoogleScholarGoogle Scholar |
Eldridge, M. D. B., Potter, S., and Cooper, S. J. B. (2012). Biogeographic barriers in north-western Australia: an overview and standardization of nomenclature. Australian Journal of Zoology 59, 270–272.
| Biogeographic barriers in north-western Australia: an overview and standardization of nomenclature.Crossref | GoogleScholarGoogle Scholar |
Frankham, R., Ballou, J. D., and Briscoe, D. A. (2004). ‘A Primer of Conservation Genetics.’ (Cambridge University Press: Cambridge.)
Frankham, R., Ballou, J. D., and Briscoe, D. A. (2010). ‘Introduction to Conservation Genetics.’ 2nd edn. (Cambridge University Press: Cambridge.)
Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., Porton, I., Ralls, K., and Ryder, O. A. (2012). Implications of different species concepts for biodiversity. Biological Conservation 153, 25–31.
| Implications of different species concepts for biodiversity.Crossref | GoogleScholarGoogle Scholar |
Fujita, M. K., McGuire, J. A., Donnellan, S. C., and Moritz, C. (2010). Diversification and persistence at the arid monsoonal interface: Australia‐wide biogeography of the Bynoe’s gecko (Heteronotia binoei; Geckkonidae). Evolution 64, 2293–2314.
| 1:CAS:528:DC%2BC3cXhtFaltL3M&md5=4f05910a11b1e952f6491834b89d6eadCAS |
| 1:CAS:528:DC%2BC3cXhtFaltL3M&md5=4f05910a11b1e952f6491834b89d6eadCAS | 20298463PubMed |
Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., and Moritz, C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution 27, 480–488.
| Coalescent-based species delimitation in an integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |
Funk, J. R. (2003). Species-level paraphyly and polyphyly: frequency, causes and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics 34, 397–423.
| Species-level paraphyly and polyphyly: frequency, causes and consequences, with insights from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |
Gould, J. (1841). On two new species of kangaroos (Macropus manicatus and M. brachyotis) from Swan River. Proceedings of the Zoological Society of London 1840, 127–128.
Gould, J. (1842). On two new species of kangaroo (Petrogale concinna and Halmaturus binoe). Proceedings of the Zoological Society of London 1842, 57–58.
Heled, J., and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570–580.
| Bayesian inference of species trees from multilocus data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlart7s%3D&md5=0291d3118a2ef8250773b2dcba70684cCAS | 1:CAS:528:DC%2BC3cXitlart7s%3D&md5=0291d3118a2ef8250773b2dcba70684cCAS | 19906793PubMed |
Hey, J., and Nielsen, R. (2004). Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760.
| 1:CAS:528:DC%2BD2cXms1KntL8%3D&md5=e76f52f90d0bafa1c0328e22ad07aa57CAS |
| 1:CAS:528:DC%2BD2cXms1KntL8%3D&md5=e76f52f90d0bafa1c0328e22ad07aa57CAS | 15238526PubMed |
Huelsenbeck, J. P., and Ronquist, F. (2005). Bayesian analysis of molecular evolution using MrBayes. In ‘Statistical Methods in Molecular Evolution’. (Ed. R. Nielsen.) pp. 183–232. (Springer: New York.)
Huson, D. H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
| Application of phylogenetic networks in evolutionary studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntValsw%3D%3D&md5=f7052c412d608b9136a3d97d552b99f8CAS | 1:CAS:528:DC%2BD28XntValsw%3D%3D&md5=f7052c412d608b9136a3d97d552b99f8CAS | 16221896PubMed |
Joly, S., and Bruneau, A. (2006). Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: an example from Rosa in North America. Systematic Biology 55, 623–636.
| Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: an example from Rosa in North America.Crossref | GoogleScholarGoogle Scholar | 16969938PubMed |
Joseph, L., and Omland, K. E. (2009). Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu 109, 1–23.
| Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds.Crossref | GoogleScholarGoogle Scholar |
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| 22543367PubMed |
Kitchener, D. J. (1978). Mammals of the Ord River area, Kimberley, Western Australia. Records of the Western Australian Museum 6, 189–219.
Kitchener, D. J., and Sanson, G. (1978). Petrogale burbidgei (Marsupiala, Macropodidae) a new rock wallaby from Kimberley, Western Australia. Records of the Western Australian Museum 6, 269–285.
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=7b00db0d4d8de2b34032ea1c0108d86cCAS | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=7b00db0d4d8de2b34032ea1c0108d86cCAS | 22319168PubMed |
Leaché, A. D., and Fujita, M. K. (2010). Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences 277, 3071–3077.
| Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus).Crossref | GoogleScholarGoogle Scholar | 20519219PubMed |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=8f652be77a972bc7a2224b8269fec45cCAS | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=8f652be77a972bc7a2224b8269fec45cCAS | 19346325PubMed |
Mayr, E. (1963). ‘Animal Species and Evolution.’ (Belknap Press: Cambridge.)
Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
| Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=807e9b1c6637836734c00157ce889224CAS | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=807e9b1c6637836734c00157ce889224CAS |
Moritz, C., Ens, E. J., Potter, S., and Catullo, R. A. (2013). The Australian monsoonal tropics: an opportunity to protect unique biodiversity and secure benefits for Aboriginal communities. Pacific Conservation Biology 19, 343–355.
Oliver, P. M., Doughty, P., and Palmer, R. (2012). Hidden biodiversity in rare northern Australian vertebrates: the case of the clawless geckos (Crenadactylus, Diplodactylidae) of the Kimberley. Wildlife Research 39, 429–435.
| Hidden biodiversity in rare northern Australian vertebrates: the case of the clawless geckos (Crenadactylus, Diplodactylidae) of the Kimberley.Crossref | GoogleScholarGoogle Scholar |
Padial, J. M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16–30.
| The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar | 20500846PubMed |
Pearson, D. (2012). Recovery plan for five species of rock wallabies: black-footed rock wallaby (Petrogale lateralis), Rothschild rock wallaby (Petrogale rothschildi), short-eared rock wallaby (Petrogale brachyotis), monjon (Petrogale burbidgei) and nabarlek (Petrogale concinna) 2012–2022. Department of Environment and Conservation, Perth, WA.
Pearson, D. J., Burbidge, A. A., Lochman, J., and Start, A. N. (2008). Monjon Petrogale burbidgei. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 367–368. (New Holland: Sydney.)
Pope, L. C., Sharp, A., and Moritz, C. (1996). Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Molecular Ecology 5, 629–640.
| Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsValsb4%3D&md5=5524ea72423f1440516f8b0142159363CAS | 8873466PubMed |
Potter, S., Eldridge, M. D. B., Taggart, D. A., and Cooper, S. J. B. (2012a). Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies. Molecular Ecology 21, 2254–2269.
| Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies.Crossref | GoogleScholarGoogle Scholar | 22417115PubMed |
Potter, S., Cooper, S. J. B., Metcalfe, C. J., Taggart, D. A., and Eldridge, M. D. B. (2012b). Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia. Molecular Phylogenetics and Evolution 62, 640–652.
| Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia.Crossref | GoogleScholarGoogle Scholar | 22122943PubMed |
Potter, S., Eldridge, M. D. B., Cooper, S. J. B., Paplinska, J. Z., and Taggart, D. A. (2012c). Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis). Conservation Genetics 13, 937–952.
| Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis).Crossref | GoogleScholarGoogle Scholar |
Rambaut, A., and Drummond, A. J. (2009). Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer
Rannala, B., and Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656.
| 1:CAS:528:DC%2BD3sXnvF2nt74%3D&md5=c0e7baa2200ca1d2195b837867d2c38dCAS | 12930768PubMed |
Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=544b296d48ad75d42c45092f433e09b6CAS | 12912839PubMed |
Sanson, G. D., and Churchill, S. K. (2008). Nabarlek Petrogale concinna. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 370–371. (New Holland: Sydney.)
Sharman, G. B., and Maynes, G. M. (1983). Rock-wallabies. In ‘Complete Book of Australian Mammals’. (Ed. R. Strahan.) pp. 207–212. (Angus and Robertson: Sydney.)
Sharman, G. B., Close, R. L., and Maynes, G. M. (1990). Chromosome evolution, phylogeny and speciation of rock wallabies (Petrogale: Macropodidae). Australian Journal of Zoology 37, 351–363.
| Chromosome evolution, phylogeny and speciation of rock wallabies (Petrogale: Macropodidae).Crossref | GoogleScholarGoogle Scholar |
Sharman, G. B., Maynes, G. M., Eldridge, M. D. B., and Close, R. L. (1995). Short-eared rock-wallaby, Petrogale brachyotis. In ‘The Mammals of Australia’. (Ed. R. Strahan.) pp. 367–368. (Reed New Holland: Sydney.)
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=14a758041684a69f42c55edcfa41ce47CAS | 16928733PubMed |
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web-servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21, 2045–2050.
| Towards next-generation biodiversity assessment using DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGkt7w%3D&md5=169d2382e779ab758c737adf9b344ddbCAS | 22486824PubMed |
Telfer, W. R., and Eldridge, M. D. B. (2010). High levels of mitochondrial DNA divergence within short-eared rock-wallaby (Petrogale brachyotis) populations in northern Australia. Australian Journal of Zoology 58, 104–112.
| High levels of mitochondrial DNA divergence within short-eared rock-wallaby (Petrogale brachyotis) populations in northern Australia.Crossref | GoogleScholarGoogle Scholar |
Thomas, O. (1904). On a new rock-wallaby from north-west Australia. Novitates Zoologicae 11, 365–366.
Thomas, O. (1909). Two new mammals from northern Australia. Annals & Magazine of Natural History 4, 197–198.
| Two new mammals from northern Australia.Crossref | GoogleScholarGoogle Scholar |
Thomas, O. (1926a). Two new rock-wallabies (Petrogale) discovered by Capt. G. W. Wilkins in northern Australia. Annals & Magazine of Natural History 17, 184–187.
| Two new rock-wallabies (Petrogale) discovered by Capt. G. W. Wilkins in northern Australia.Crossref | GoogleScholarGoogle Scholar |
Thomas, O. (1926b). On various mammals obtained during Capt Wilkins’s expedition in Australia. Annals & Magazine of Natural History 17, 625–635.
| On various mammals obtained during Capt Wilkins’s expedition in Australia.Crossref | GoogleScholarGoogle Scholar |
Van Dyck, S., and Strahan, R. (2008). ‘The Mammals of Australia.’ 3rd edn. (New Holland: Sydney.)
Vogler, A. P., and Monaghan, M. T. (2007). Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research 45, 1–10.
| Recent advances in DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |
Yang, Z., and Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107, 9264–9269.
| Bayesian species delimitation using multilocus sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslGrtLs%3D&md5=98ed14665460931a87918ea0c2ea1417CAS | 20439743PubMed |