Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

Towards a wildfire vulnerability index using expert judgement

M. Papathoma-Köhle https://orcid.org/0000-0002-7878-1340 A * , D. Hausharter B , M. Schlögl https://orcid.org/0000-0002-4357-523X A C and S. Fuchs A
+ Author Affiliations
- Author Affiliations

A Department of Civil Engineering and Natural Hazards, BOKU University, Vienna, Austria.

B Austrian Service for Torrent and Avalanche Control, Villach, Austria.

C Department for Climate Impact Research, GeoSphere Austria, Vienna, Austria.


International Journal of Wildland Fire 34, WF24114 https://doi.org/10.1071/WF24114
Submitted: 8 July 2024  Accepted: 18 December 2024  Published: 16 January 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC)

Abstract

Background

Climate change is expected to significantly change wildfire frequency and magnitude, which poses particular challenges for countries with limited experience in managing wildfires, such as Austria.

Aims

To develop a vulnerability index, this study aims at weighting the characteristics of buildings and their surroundings (vulnerability indicators) by involving different national stakeholders (Austria) and international experts.

Methods

Expert judgement and the analytic hierarchy process (AHP) were used for weighting indicators identified in a previous study through a literature review.

Key results

The judgement of two expert groups regarding the weighting of the vulnerability indicators is compared. A wildfire vulnerability index that combines all the indicators into a single vulnerability index assigned to each building is introduced.

Conclusions

The wildfire vulnerability index for buildings is a tool for decision-makers and other end users in Austria. The index sets the foundations for ongoing research in the field of vulnerability assessment and is based on trans-disciplinary approaches involving both academia and stakeholders.

Implications

The index can be used to support decision-making, risk reduction and climate change adaptation strategies but it can also guide local adaptation at the building level.

Keywords: analytic hierarchy process, Austria, buildings, expert judgement, index, indicators, stakeholders, vulnerability, wildland–urban interface, wildfire.

References

Aczél J, Saaty TL (1983) Procedures for synthesizing ratio judgements. Journal of Mathematical Psychology 27, 93-102.
| Crossref | Google Scholar |

Agliata R, Bortone A, Mollo L (2021) Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: review of indicators and example of parameters selection for a sample area. International Journal of Disaster Risk Reduction 58, 102199.
| Crossref | Google Scholar |

Àgueda A, Vacca P, Planas E, Pastor E (2023) Evaluating wildfire vulnerability of Mediterranean dwellings using fuzzy logic applied to expert judgement. International Journal of Wildland Fire 32, 1011-1029.
| Crossref | Google Scholar |

Alexandre PM, Stewart SI, Keuler NS, Clayton MK, Mockrin MH, Bar-Massada A, Syphard AD, Radeloff VC (2016a) Factors related to building loss due to wildfires in the conterminous United States. Ecological Applications 26, 2323-2338.
| Crossref | Google Scholar | PubMed |

Alexandre PM, Stewart SI, Mockrin MH, Keuler NS, Syphard AD, Bar-Massada A, Clayton MK, Radeloff VC (2016b) The relative impacts of vegetation, topography and spatial arrangement on buildings to wildfires in case studies of California and Colorado. Landscape Ecology 31, 415-430.
| Crossref | Google Scholar |

Australian Standards (2009) Construction of buildings in bushfire-prone areas, AS 3959–2009, Standards Australia, Sydney, Australia

Barroca B, Bernardara P, Mouchel J-M, Hubert G (2006) Indicators for identification of urban flooding vulnerability. Natural Hazards and Earth Systems Sciences 6, 553-561.
| Crossref | Google Scholar |

Cao D, Leung LC, Law JS (2008) Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach. Decision Support Systems 44, 944-953.
| Crossref | Google Scholar |

Cardil A, Monedero S, Schag G, de-Miguel S, Tapia M, Stoof CR, Silva CA, Mohan M, Cardil A, Ramirez J (2021) Fire behavior modeling for operational decision-making. Current Opinion in Environmental Science & Health 23, 100291.
| Crossref | Google Scholar |

Cho F (2019) ahpsurvey: Analytic Hierarchy Process for survey data. R package version 0.4.1. Available at https://CRAN.R-project.org/package=ahpsurvey

Cunningham CX, Williamson GJ, Bowman DMJS (2024) Increasing frequency and intensity of the most extreme wildfires on Earth. Nature Ecology & Evolution 8, 1420-1425.
| Crossref | Google Scholar | PubMed |

Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009) A revised (PTVA) model for assessing the vulnerability of buildings to tsunami. Natural Hazards and Earth System Sciences 9, 1557-1565.
| Crossref | Google Scholar |

Dall’Osso F, Dominey-Howes D, Tarbotton C, Summerhayes S, Withycombe G (2016) Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using ‘international expert judgement’: introducing the PTVA-4 model. Natural Hazards 83, 1229-1256.
| Crossref | Google Scholar |

Dominey-Howes D, Papathoma M (2007) Validating the ‘Papathoma Tsunami Vulnerability Assessment Model (PTVAM)’ using field data from the 2004 Indian Ocean tsunami. Natural Hazards 53, 43-61.
| Crossref | Google Scholar |

Dominey-Howes D, Dunbar P, Varner J, Papathoma-Köhle M (2010) Estimating probable maximum loss from a Cascadia tsunami. Natural Hazards 53, 43-61.
| Crossref | Google Scholar |

Dossi S, Messerschmidt B, Ribeiro LM, Almeida M, Rein G (2023) Relationships between building features and wildfire damage in California, USA and Pedrógão Grande, Portugal. International Journal of Wildland Fire 32, 296-312.
| Crossref | Google Scholar |

Ettinger S, Mounaud L, Magill C, Yao-Lafourcade A-F, Thouret J-C, Manville V, Negulescu C, Zuccaro G, De Gregorio D, Nardone S, Luque Uchuchoque JA, Arguedas A, Macedo L, Manrique Llerena N (2016) Building vulnerability to hydro-geomorphic hazards: estimating damage probability from qualitative vulnerability assessment using logistic regression. Journal of Hydrology 541, Part A, 563-581.
| Crossref | Google Scholar |

European Commission: Joint Research Centre, Oom D, De Rigo D, Pfeiffer H, Branco A, Ferrari D, Grecchi R, Artés Vivancos T, Houston Durrant T, Boca R, Maianti P, Libertà G, San-Miguel-Ayanz J, Lelouvier R, Onida M, Benchikha A, Abbas M, Humer F, Vacik H, Müller M, Heil K, Baetens J, Konstantinov V, Pešut I, Kaliger A, Petkoviček S, Papageorgiou K, Petrou P, Toumasis I, Pecl J, Ruuska R, Richoilley L, Chassagne F, Savazzi R, Gonschorek A, Panteli M, Debreceni P, Nagy D, Nugent C, Ben Zaken A, Di Fonzo M, Sciunnach R, Micillo G, Fresu G, Marzoli M, Pompei E, Ferlazzo S, Ascoli D, Romano R, Leisavnieks E, JaunķIķis Z, Mitri G, Repšienė S, Glazko Z, Assali F, Mharzi Alaoui H, Kok E, Stoof C, Timovska M, Botnen D, Piwnicki J, Szczygieł R, Kaczmarowski J, Pinho J, Moreira J, Cruz M, Sbirnea R, Mara S, Milanović S, Longauerová V, Jakša J, Lopez-Santalla A, Sandahl L, Andersson S, Beyeler S, Sautter M, Conedera M, Pezzatti B, Tolgay Dursun K, Baltaci U, Gazzard R, Moffat A, Sydorenko S (2022) ‘Pan-European wildfire risk assessment.’ (Publications Office of the European Union) 10.2760/9429

Grošelj P, Dolinar G (2023) Group AHP framework based on geometric standard deviation and interval group pairwise comparisons. Information Sciences 626, 370-389.
| Crossref | Google Scholar |

Haslinger K, Mayer K (2023) Early spring droughts in Central Europe: indications for atmospheric and oceanic drivers. Atmospheric Science Letters 24, e1136.
| Crossref | Google Scholar |

Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel M, Smith AJP, Burton C, Betts RA, van der Werf GR, Sitch S, Canadell JG, Santín C, Kolden C, Doerr SH, Le Quéré C (2022) Global and regional trends and drivers of fire under climate change. Reviews of Geophysics 60, e2020RG000726.
| Crossref | Google Scholar |

Kappes M, Papathoma-Köhle M, Keiler M (2012) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography 32, 577-590.
| Crossref | Google Scholar |

Lampin-Maillet C, Mantzavelas A, Galiana L, Jappiot M, Long M (2010) Wildland–urban interfaces, fire behaviour and vulnerability, mapping and assessment. In ‘Towards Integrated Fire Management – Outcomes of the European Project Fire Paradox’. (Eds J Sande Silva, F Regio, PM Fernandes, E Rigolot) pp. 71–93. (European Forest Institute: Joensuu, Finland)

Laranjeira J, Cruz H (2014) Building vulnerabilities to fires at the wildland urban interface. In ‘Advances in Forest Fire Research’. (Ed. DX Viegas) pp. 673–684. (Imprensa da Universidade de Coimbra: Coimbra, Portugal) 10.14195/978-989-26-0884-6_76

Maranghides A, McNamara D, Mell W, Trook J, Toman B (2013) ‘A case study of a community affected by the Witch and Guejito Fires Report: 2 - evaluating the effects of hazard mitigation actions on structure ignitions.’ (National Institute of Standards and Technology)

Müller MM (2023) Jahresrückblick 2022. Waldbrand-Blog Österreich. Available at https://fireblog.boku.ac.at/2023/01/12/jahresrueckblick-2022/[In German]

Müller MM, Vila-Vilardell L, Vacik H (2020) ‘Forest fires in the Alps – State of knowledge, future challenges and options for an integrated fire management.’ (EUSALP Action Group 8)

Olefs M, Formayer H, Gobiet A, Marke T, Schöner W, Revesz M (2021) Past and future changes of the Austrian climate – Importance for tourism. Journal of Outdoor Recreation and Tourism 34, 100395.
| Crossref | Google Scholar |

Ozdemir MS (2005) Validity and inconsistency in the analytic hierarchy process. Applied Mathematics and Computation 161, 707-720.
| Crossref | Google Scholar |

Papathoma M, Dominey-Howes D (2003) Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management. Natural Hazards and Earth System Sciences 6, 733-744.
| Crossref | Google Scholar |

Papathoma M, Dominey-Howes D, Zong Y, Smith D (2003) Assessing tsunami vulnerability, an example from Herakleio, Crete. Natural Hazards and Earth System Sciences 3, 377-389.
| Crossref | Google Scholar |

Papathoma-Köhle M, Schlögl M, Fuchs S (2019) Vulnerability indicators for natural hazards: an innovative selection and weighting approach. Scientific Reports 9, 15026.
| Crossref | Google Scholar | PubMed |

Papathoma-Köhle M, Schlögl M, Dosser L, Roesch F, Borga M, Erlicher M, Keiler M, Fuchs S (2022a) Physical vulnerability to dynamic flooding: vulnerability curves and vulnerability indices. Journal of Hydrology 607, 127501.
| Crossref | Google Scholar |

Papathoma-Köhle M, Schlögl M, Garlichs C, Diakakis M, Mavroulis S, Fuchs S (2022b) A wildfire vulnerability index for buildings. Scientific Reports 12, 6378.
| Crossref | Google Scholar |

Quarles SL, Leschak P, Cowger CR, Worley K, Brown R, Iskowitz C (2013) Lessons learned from Waldo Canyon. Fire Adapted Communities Mitigation Assessment Team Findings. p. 48. (Insurance Institute for Business & Home Safety)

R Core Team (2024) ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria) Available at https://www.R-project.org/

Riedl R (2005) Der Analytic Hierarchy Process: Ein geeignetes Verfahren für komplexe Entscheidungen in der Wirtschaftsinformatik? HMD-Praxis Der Wirtschaftsinformatik 42, 104-114 [In German].
| Google Scholar |

Ritchie H, Rosado P, Roser M (2022) Natural disasters. Our world in data. Available at https://ourworldindata.org/natural-disasters

Ronninger CU (2019) ‘Analytischer Hierarchieprozess.’ (CRGRAPH)[In German]

Saaty RW (1987) The analytic hierarchy process – what it is and how it is used. Mathematical Modelling 9, 161-176.
| Crossref | Google Scholar |

Saaty TL, Ozdemir MS (2003) Why the magic number seven plus or minus two. Mathematical and Computer Modelling 38, 233-244.
| Crossref | Google Scholar |

Samora-Arvela A, Aranha J, Correia F, Pinto DM, Magalhães C, Tedim F (2023) Understanding building resistance to wildfires: a multi-factor approach. Fire 6, 32.
| Crossref | Google Scholar |

Steward S (2004) ‘PDF Hacks.’ (O’Reilly Media, Inc.)

Syphard AD, Keeley JE (2019) Factors associated with structure loss in the 2013-2018 California wildfires. Fire 2, 49.
| Crossref | Google Scholar |

Syphard AD, Brennan TJ, Keeley JE (2017) The importance of building construction materials relative to other factors affecting structure survival during wildfire. International Journal of Disaster Risk Reduction 21, 140-147.
| Crossref | Google Scholar |

Tavana M, Soltanifar M, Santos-Arteaga FJ (2023) Analytical hierarchy process: revolution and evolution. Annals of Operations Research 326, 879-907.
| Crossref | Google Scholar |

Thennavan E, Ganapathy GP, Chandra Sekaran SS, Rajawat AS (2016) Use of GIS in assessing building vulnerability for landslide hazard in The Nilgiris, Western Ghats, India. Natural Hazards 82, 1031-1050.
| Crossref | Google Scholar |

Thouret J-C, Ettinger S, Guitton M, Santoni O, Magill C, Martelli K, Zuccaro G, Revilla V, Charca JA, Arguedas A (2014) Assessing physical vulnerability in large cities exposed to flash floods and debris flows: the case of Arequipa (Peru). Natural Hazards 73, 1771-1815.
| Crossref | Google Scholar |

UNISDR (United Nations Office for Disaster Risk Reduction) (2009) ‘UNISDR terminology on disaster risk reduction.’ (UN: Geneva, Switzerland)

Vacca P, Caballero D, Pastor E, Planas E (2020) WUI fire risk mitigation in Europe: a performance-based design approach at home-owner level. Journal of Safety Science and Resilience 1, 97-105.
| Crossref | Google Scholar |

Vacik H, Müller M (2013) Waldbrand-Datenbank für Österreich. Wildbach - Und Lawinenverbauung 172, 188-189 [In German].
| Google Scholar |

Vacik H, Müller MM, Degenhart J, Sass O (2020) Auswirkungen von Waldbränden auf die Schutzfunktionalität alpiner Wälder. In ‘ExtremA 2019 – Aktueller Wissenstand zu Extremereignissen alpiner Naturgefahren in Österreich’. (Eds T Glade, M Mergili, K Sattler) pp. 173–201. (Vandenhoeck & Ruprecht: Vienna, Austria) Available at https://library.oapen.org/handle/20.500.12657/43512

Xanthopoulos G (2004) Factors affecting the vulnerability of houses to wildland fire in the Mediterranean region. In ‘II International workshop on forest fires in the wildland–urban interface and rural areas in Europe: an integral planning and management challenge’. pp. 85–92. (Mediterranean Agronomic Institute of Chania: Athens, Greece)