Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Resilience of European beech forests (Fagus sylvatica L.) after fire in a global change context

Janet Maringer A B E , Marco Conedera B , Davide Ascoli C , Dirk R. Schmatz D and Thomas Wohlgemuth D
+ Author Affiliations
- Author Affiliations

A Institute for Landscape Planning and Ecology, University of Stuttgart, Keplerstrasse 11, D-70174 Stuttgart, Germany.

B Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Insubric Ecosystems, A Ramél 18, CH-6593 Cadenazzo, Switzerland.

C Department of Agriculture, Forest and Food Sciences, University of Turin, via Leonardo da Vinci 44, I-10095 Grugliasco, Italy.

D Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Dynamics, Züricherstrasse 111, CH-8903 Birmensdorf, Switzerland.

E Corresponding author. Email: jm@ilpoe.uni-stuttgart.de

International Journal of Wildland Fire 25(6) 699-710 https://doi.org/10.1071/WF15127
Submitted: 15 July 2015  Accepted: 24 February 2016   Published: 25 May 2016

Abstract

The European beech (Fagus sylvatica L.) is one of the most ecologically and economically important tree species in Europe. Nonetheless, post-fire ecological processes in beech forests have only been marginally studied although they might become more important for forest management in the light of global climate change drought effects. Focusing on the Southern European Alps, where numerous forest fires have affected beech stands, we assessed temporal trends and detected factors that influence beech regeneration in beech forests burnt between 1970 and 2012. Beech regeneration was found to occur abundantly in fire sites of mixed burn severity, and often co-occurred with light-demanding pioneer trees (mostly Betula pendula Roth). These pioneers declined in abundance from 20 years post-fire onwards, whereas beech dominance increased. Beech regeneration density was best explained in regression models by the canopy of remnant trees and the abundance of competing ground vegetation. As fire-injured beech trees slowly die back, the canopy gradually opens, favouring beech recruitment for as long as decades, depending on the light conditions. In contrast, dense layers of early post-fire colonisers may delay beech regeneration for many years. Generally, single fire events favour beech regeneration except in areas where the burn severity is extraordinarily high.

Additional keywords: beech fire ecology, burn severity, tree communities, wildfires.


References

Agestam E, Ekö P-M, Nilsson U, Welander NT (2003) The effect of shelterwood density and site preparation on natural regeneration of Fagus sylvatica in southern Sweden. Forest Ecology and Management 176, 61–73.
The effect of shelterwood density and site preparation on natural regeneration of Fagus sylvatica in southern Sweden.Crossref | GoogleScholarGoogle Scholar |

Amann G (1967) Bäume und Sträucher des Waldes. (Neumann-Neudamm: Melsungen)

Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, von Gilsa H, Huss J, Kenk G, Kölling C, Kohnle U, Meyer P., Mosandl R, Mossmayer U, Palmer S, Reif A, Refuess KE, Stimm B (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. – Kristische Anmerkungen zu einem Beitrag von RENNENBERG et al. (2004). Allgemeine Forst und Jagdzeitung 4, 60–68.

Arpa Piemonte (2015) Available at http://www.arpa.piemonte.it/banca-dati-meteorologica [Verified 1 February 2015]

Ascoli D, Castagneri D, Valsecchi C, Conedera M, Bovio G (2013) Post-fire restoration of beech stands in the Southern Alps by natural regeneration. Ecological Engineering 54, 210–217.
Post-fire restoration of beech stands in the Southern Alps by natural regeneration.Crossref | GoogleScholarGoogle Scholar |

Ascoli D, Vacchiano G, Maringer J, Bovio G, Conedera M (2015) The synchronicity of masting and intermediate severity fire effects favor beech recruitment. Forest Ecology and Management 353, 126–135.
The synchronicity of masting and intermediate severity fire effects favor beech recruitment.Crossref | GoogleScholarGoogle Scholar |

Barna M (2011) Natural regeneration of Fagus sylvatica L.: a review. Austrian Journal of Forest Science 2, 71–91.

Bílek L, Remeš J, Zahradnik D (2009) Natural regeneration of senescent even-aged beech (Fagus sylvatica L.) stands under the conditions of Central Bohemia. Journal of Forest Science 4, 145–155.

Blaser P (1973) ‘Die Bodenbildung auf Silikatgestein im südlichen Tessin.’ (ETH Zurich: Zurich)

Blaser P, Zimmermann S, Luster J, Walthert L, Lüscher P (2005) ‘Waldböden der Schweiz.’ (Haupt-Verlag: Bern)

Bliese P (2000) Within-group agreement, non-independence, and reliability: implications for data aggregation and analysis. In ‘Multilevel Theory, Research, and Methods in Organizations: Foundations, Extensions, and New Directions’. (Eds KJ Kleine, WJ Kozlowski) pp. 349–381. (Jossey-Bass: San Francisco)

Bonnet VH, Schoettle AW, Shepperd WD (2005) Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa. Canadian Journal of Forest Research 35, 37–47.
Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa.Crossref | GoogleScholarGoogle Scholar |

Bradley L, Giesecke T, Halsall K (2013) Exploring the requirement for anthropogenic disturbance to assist the stand-scale expansion of Fagus sylvatica L. outside southern Scandinavia. The Holocene 23, 579–586.
Exploring the requirement for anthropogenic disturbance to assist the stand-scale expansion of Fagus sylvatica L. outside southern Scandinavia.Crossref | GoogleScholarGoogle Scholar |

Brang P, Hilfiker S, Wasem U, Schwyzer A, Wohlgemuth T (2015) Langzeitforschung auf Sturmflächen zeigt Potenzial und Grenzen der Naturverjüngung. Schweizerische Zeitschrift für Forstwesen 166, 147–158.
Langzeitforschung auf Sturmflächen zeigt Potenzial und Grenzen der Naturverjüngung.Crossref | GoogleScholarGoogle Scholar |

Brotons L, Aquilué N, de Cáceres M, Fortin M-J, Fall A (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscape. PLoS One 5, 1–12.

Brown JK 1974 Handbook for inventorying downed woody material. USDA Forest Service, Rocky Mountain Research Station, Technical Report INT-16. (Ogden, UT)

Bugmann H (1996) A simplified forest model to study species composition along climate gradients. Ecology 77, 2055–2074.
A simplified forest model to study species composition along climate gradients.Crossref | GoogleScholarGoogle Scholar |

Camerano P, Gottero F, Terzuolo P, Varese P (2004) ‘Tipi forestali del Piemonte.’ (Blu Edizioni: Torino)

Ceschi I (2006) Il bosco nel Canton Ticino.’ (Armando Dadó Editore: Locarno)

CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, NCCR Climate, OcCC. (Zurich, Switzerland)

Chakraborty T, Somidh S, Reif A (2013) Decrease in available soil water storage capacity reduces vitality of young unterstorey European beeches (Fagus sylvatica L.) – a case study from the Black Forest, Germany. Plants 2, 676–698.
Decrease in available soil water storage capacity reduces vitality of young unterstorey European beeches (Fagus sylvatica L.) – a case study from the Black Forest, Germany.Crossref | GoogleScholarGoogle Scholar | 27137398PubMed |

Christensen M, Hahn K, Mountford EP, Ódor P, Standovár T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecology and Management 210, 267–282.
Dead wood in European beech (Fagus sylvatica) forest reserves.Crossref | GoogleScholarGoogle Scholar |

Coll L, Balandier P, Picon-Cochard C, Prévosto B, Curt T (2003) Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Annals of Forest Science 60, 593–600.
Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions.Crossref | GoogleScholarGoogle Scholar |

Corpo Forestale dello Stato – Ministero delle Politiche Agricole, Alimentari e Forestali (n.d.) Ufficio Territoriale per la Biodiversità di Verona Centro Nazionale Biodiversità Forestale di Peri.

Crotteau JS, Varner JM, Ritchie MW (2013) Post-fire regeneration across a fire severity gradient in the southern Cascades. Forest Ecology and Management 287, 103–112.
Post-fire regeneration across a fire severity gradient in the southern Cascades.Crossref | GoogleScholarGoogle Scholar |

Czajkowski T, Kühling M, Bolte A (2005) Einfluss der Sommertrockenheit im Jahre 2003 auf das Wachstum von Naturverjüngungen der Buche (Fagus sylvatica L.) im nördöstlichen Mitteleuropa. Allgemeine Forst- und Jagdzeitung 8, 133–143.

Delitti W, Ferran A, Trabaud L, Vallejo RV (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. plant composition and productivity. Plant Ecology 177, 57–70.
Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. plant composition and productivity.Crossref | GoogleScholarGoogle Scholar |

Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters 41, 2928–2933.
Large wildfire trends in the western United States, 1984–2011.Crossref | GoogleScholarGoogle Scholar |

Ellenberg H, Klötzli F (1972) Waldgesellschaften und Waldstandorte der Schweiz Mitteilungen der Schweizerischen Anstalt für das forstiche Versuchswesen 48, 587–930.

Esri (2010) ArcGIS Desktop: Release 10. (Environmental Systems Research Institute: Redlands, CA).

Flannigan MD, Stocks B, Wotton B (2000) Climate change and forest fires. The Science of the Total Environment 262, 221–229.
Climate change and forest fires.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotleru78%3D&md5=bcaefc68de228ba35fa8b7462aee031aCAS | 11087028PubMed |

Fox J, Weisberg S (2015) ‘An R Companion to Applied Regression.’ (Sage: London, CA)

Gärtner S, Reif A, Xystrakis F, Sayer U, Bendagha N, Matzarakis A (2008) The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany. Journal of Vegetation Science 19, 757–768.
The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany.Crossref | GoogleScholarGoogle Scholar |

Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change 3, 203–207.
Climate change may cause severe loss in the economic value of European forest land.Crossref | GoogleScholarGoogle Scholar |

Harmer R (1995) Natural regeneration of broadleaved trees in Britain: III. Germination and establishment. Forestry 68, 1–9.
Natural regeneration of broadleaved trees in Britain: III. Germination and establishment.Crossref | GoogleScholarGoogle Scholar |

Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72, 320–338.
Maximum likelihood approaches to variance component estimation and to related problems.Crossref | GoogleScholarGoogle Scholar |

Herranz J, Martinez-Sanchez J, de Las Heras J, Ferrandis P (1996) Stages of plant succession in Fagus sylvatica L. and Pinus sylvestris L. in forests of Tejera Negra Natural Park (Central Spain), three years after fire. Israel Journal of Plant Sciences 44, 347–358.
Stages of plant succession in Fagus sylvatica L. and Pinus sylvestris L. in forests of Tejera Negra Natural Park (Central Spain), three years after fire.Crossref | GoogleScholarGoogle Scholar |

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Hood SM, Smith SL, Cluck DR (2007) Delayed conifer tree mortality following fire in California. USDA Forest Service, Pacific Southwest Research Station, General Technical Report PSW-GTR-203. (Albany CA)

Horn HS (1974) The ecology of secondary succession. Annual Review of Ecology and Systematics 5, 25–37.
The ecology of secondary succession.Crossref | GoogleScholarGoogle Scholar |

International Organization for Standardization (ISO) (2005) ISO 10 390:2005. Soil quality – determination of pH. Available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40879 [Verified 28 April 2016])

International Organization for Standardization (ISO) (2006) ISO 11464:2006. Soil quality – pretreatment of samples for physico-chemical analysis. Available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=37718 [Verified 28 April 2016]

IPCC 2014. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Cisneros BJ, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypersele J-P (2014) ‘Climate Change 2014: Synthesis Report.’ (Eds RK Pachauri, L Meyer) (Cambridge University Press: Cambridge (UK).

Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto S, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. International Journal of Climatology 34, 1657–1675.
The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data.Crossref | GoogleScholarGoogle Scholar |

Johnson EA, Miyanishi K (2007) ‘Plant Disturbance Ecology.’ (Elsevier: Boston, MA)

Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18, 116–126.
Fire intensity, fire severity and burn severity: a brief review and suggested usage.Crossref | GoogleScholarGoogle Scholar |

Kompa T (2004) ‘Die Initialphase der Vegetationsentwicklung nach Windwurf in Buchen-Wäldern auf Zechstein - und Buntsandstein-Standorten des südwestlichen Harzvorlandes.’ (Mathematisch-Naturwissenschaftliche Fakultät der Universität Göttingen: Göttingen)

Kompa T, Schmid W (2005) Buchenwald-Sukzession nach Windwurf auf Zechstein-Standorten des südwestlichen Harzvorlandes Hercynia N.F. 38, 233–261.

Koop H, Hilgen P (1987) Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France). Forest Ecology and Management 20, 135–150.
Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France).Crossref | GoogleScholarGoogle Scholar |

Kramer K, Brang P, Bachofen H, Bugmann H, Wohlgemuth T (2014) Site factors are more important than salvage logging for tree regeneration after wind disturbance in Central European forests. Forest Ecology and Management 331, 116–128.
Site factors are more important than salvage logging for tree regeneration after wind disturbance in Central European forests.Crossref | GoogleScholarGoogle Scholar |

Krebs CJ (1999) ‘Ecological Methodology.’ (Addison–Wesley Educational Publisher: Boston, MA)

Lampainen J, Kuuluvainen T, Wallenius T, Karjalainen L, Vanha-Majamaa I (2004) Long-term forest structure and regeneration after wildfire in Russia Karelia. Journal of Vegetation Science 15, 245–256.
Long-term forest structure and regeneration after wildfire in Russia Karelia.Crossref | GoogleScholarGoogle Scholar |

Larson AJ, Franklin JF (2005) Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. Forest Ecology and Management 218, 25–36.
Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA.Crossref | GoogleScholarGoogle Scholar |

Lauber K, Wagner G, Gygax A (2007) ‘Flora Helvetica: 3000 Blüten- und Farnpflanzen der Schweiz, Artbeschreibungen und Bestimmungsschlüssel.’ (Haupt-Verlag: Bern)

Leder B (1993) Zur Geschichte einer Einbeziehung von Weichhölzern in die waldbauliche Praxis. Forst und Holz 48, 337–343.

Leps J, Smilauer P (2003) ‘Multivariate Analysis of Ecological Data using CANOCO.’ (Cambridge University Press: Cambridge, UK).

Lindbladh M, Niklasson M, Karlsson M, Björkman L, Churski M (2008) Close anthropogenic control of Fagus sylvatica establishment and expansion in a Swedish protected landscape – implications for forest history and conservation. Journal of Biogeography 35, 682–697.
Close anthropogenic control of Fagus sylvatica establishment and expansion in a Swedish protected landscape – implications for forest history and conservation.Crossref | GoogleScholarGoogle Scholar |

Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146, 69–83.
Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?Crossref | GoogleScholarGoogle Scholar | 25156267PubMed |

Luo L, Tang Y, Zhong S, Bian X, Heilman WE (2013) Will future climate favor more erratic wildfires in the Western United States? Journal of Applied Meteorology and Climatology 52, 2410–2417.
Will future climate favor more erratic wildfires in the Western United States?Crossref | GoogleScholarGoogle Scholar |

Maringer J, Wohlgemuth T, Neff C, Pezzatti G, Conedera M (2012) Post-fire spread of alien plant species in a mixed broad-leaved forest of the Insubric region. Flora – Morphology, Distribution, Functional Ecology of Plants 1, 19–29.
Post-fire spread of alien plant species in a mixed broad-leaved forest of the Insubric region.Crossref | GoogleScholarGoogle Scholar |

Marzano R, Lingua E, Garbarino M (2012) Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a Mediterranean forest. iForest 5, 93–100.
Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a Mediterranean forest.Crossref | GoogleScholarGoogle Scholar |

MeteoSwiss (2015) Swiss climate. Federal Office of Meteorology and Climatology. Zürich, Switzerland, updated in 2015. Available at http://www.meteoschweiz.admin.ch/home.html?tab=overview [Verified 1 February 2015].

Mette T, Dolos K, Meinardus C, Bräuning A, Reineking B, Blaschke M, Pretzsch H, Beierkuhnlein C, Gohlke A, Wellstein C (2013) Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4, 145
Climatic turning point for beech and oak under climate change in Central Europe.Crossref | GoogleScholarGoogle Scholar |

Morgan P, Keane RE, Dillon GK, Jain TB, Hudak AT, Karau EC, Sikkink PG, Holden ZA, Strand EK (2014) Challenges of assessing fire and burn severity using field measures, remote sensing and modeling. International Journal of Wildland Fire 23, 1045–1060.
Challenges of assessing fire and burn severity using field measures, remote sensing and modeling.Crossref | GoogleScholarGoogle Scholar |

Mountford E, Savill P, Bebber D (2006) Pattern of regeneration and ground vegetation associated with canopy gaps in a managed beech wood in southern England. Forestry 79, 389–409.
Pattern of regeneration and ground vegetation associated with canopy gaps in a managed beech wood in southern England.Crossref | GoogleScholarGoogle Scholar |

Nussbaumer A, Waldner P, Etzold S, Gessler A, Benham S, Thomsen IM, Jørgensen BB, Timmermann V, Verstraeten A, Sioen G, Rautio P, Ukonmaanaho L, Skudnik M, Apuhtin V, Braun S, Wauer A (2016) Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe. Forest Ecology and Management 363, 237–251.
Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe.Crossref | GoogleScholarGoogle Scholar |

Oberdorfer E (1964) Der insubrische Vegetationskomplex, seine Struktur und Abgrenzung gegen die submediterrane Vegetation in Oberitalien und in der Südschweiz. Beiträge zur naturkundlichen Forschung in Südwest-Deutschland 23, 141–187.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Wagner H (2015) The VEGAN package. Available at https://cran.r-project.org/web/packages/vegan/vegan.pdf [Verified 7 October 2015]

Olesen C, Madsen P (2008) The impact of roe deer (Capreolus capreolus), seedbed, light and seed fall on natural beech (Fagus sylvatica) regeneration. Forest Ecology and Management 255, 3962–3972.
The impact of roe deer (Capreolus capreolus), seedbed, light and seed fall on natural beech (Fagus sylvatica) regeneration.Crossref | GoogleScholarGoogle Scholar |

Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343, 51–53.
Climate-induced changes in forest disturbance and vegetation.Crossref | GoogleScholarGoogle Scholar |

Packham JR, Thomas P, Atkinson M, Degen T (2012) Biological flora of the British Isles: Fagus sylvatica. Journal of Ecology 100, 1557–1608.
Biological flora of the British Isles: Fagus sylvatica.Crossref | GoogleScholarGoogle Scholar |

Pausas JC, Fernándes-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110, 215–226.
Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime.Crossref | GoogleScholarGoogle Scholar |

Peltier A, Touzet M-C, Armengaud C, Ponge J (1997) Establishment of Fagus sylvatica and Fraxinus excelsior in an old-growth beech forest. Journal of Vegetation Science 8, 13–20.
Establishment of Fagus sylvatica and Fraxinus excelsior in an old-growth beech forest.Crossref | GoogleScholarGoogle Scholar |

Peters R (1997) ‘Beech Forests.’ (Kluwer: Dordrecht)

Petritan AM, von Lüpke B, Petritan IC (2007) Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80, 397–412.
Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings.Crossref | GoogleScholarGoogle Scholar |

Pezzatti G, Reinhard M, Conedera M (2010) Swissfire: die neue schweizerische Waldbranddatenbank. Schweizerische Zeitschrift für Forstwesen 161, 465–469.
Swissfire: die neue schweizerische Waldbranddatenbank.Crossref | GoogleScholarGoogle Scholar |

Pfiffner AO (2015) ‘Geologie der Alpen.’ (Haupt-Verlag: Bern)

Pinheiro J, Bates D DebRoy S, Sarkar D, EISPACK authors, Heisterkamp S, Van Willigen B, R-core (2015) Linear and nonlinear mixed effects models. Available at https://cran.r-project.org/web/packages/nlme/nlme.pdf [Verified 7 October 2015]

Provendier D, Balandier P (2008) Compared effects of competition by grasses (Graminoides) and broom (Cytisus scoparius) on growth and functional traits of beech saplings (Fagus sylvatica). Annals of Forest Science 65, 510–519.
Compared effects of competition by grasses (Graminoides) and broom (Cytisus scoparius) on growth and functional traits of beech saplings (Fagus sylvatica).Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2014) ‘R: a language and environment for statistical computing.’ (Vienna, Austria)

Rebetez M (1999) Twentieth century trends in droughts in southern Switzerland. Geophysical Research Letters 26, 755–758.
Twentieth century trends in droughts in southern Switzerland.Crossref | GoogleScholarGoogle Scholar |

Romme WH, Boyce MS, Gresswell R, Merrill EH, Minshall GW, Whitlock C, Turner MG (2011) Twenty years after the 1988 Yellowstone fires: lessons about disturbance and ecosystems. Ecosystems 14, 1196–1215.
Twenty years after the 1988 Yellowstone fires: lessons about disturbance and ecosystems.Crossref | GoogleScholarGoogle Scholar |

Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336.
The role of increasing temperature variability in European summer heatwaves.Crossref | GoogleScholarGoogle Scholar | 14716318PubMed |

Schönenberger W, Senn J, Wasem U (1995) Factors affecting establishment of planted trees, including European larch, near the Alpine timerline. In ‘Ecology and Management of Larix Forests: a Look Ahead.’ (Eds WC Schmidt, KJ McDonald) USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-319, pp. 170–175. (Ogden, UT)

Seynave I, Gégout J, Hervé J, Dhôte J (2008) Is the spatial distribution of European beech (Fagus sylvatica L.) limited by its potential height growth? Journal of Biogeography 35, 1851–1862.
Is the spatial distribution of European beech (Fagus sylvatica L.) limited by its potential height growth?Crossref | GoogleScholarGoogle Scholar |

Spinedi F, Isotta FA (2005) Il clima del Ticino negli ultimi 50 anni. Dati statistiche e società 2, 4–39.

Tinner W, Conedera M (1995) Indagini paleobotaniche sulla storia della vegetazione e degli incendi forestali durante l’olocene al Lago di Origlio (Ticino Meridionale). Bollettino della Società Ticinese di Scienze Naturali 1-2, 91–106.

Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273–289.
Long-term forest fire ecology and dynamics in southern Switzerland.Crossref | GoogleScholarGoogle Scholar |

Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. The Holocene 10, 565–574.
A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps.Crossref | GoogleScholarGoogle Scholar |

Trabaud L (1991) Fire regimes and phytomass growth dynamics in a Quercus coccifera garrigue. Journal of Vegetation Science 2, 307–314.
Fire regimes and phytomass growth dynamics in a Quercus coccifera garrigue.Crossref | GoogleScholarGoogle Scholar |

Turner MG, Romme WH, Gardner R, Hargrove WW (1997) Effects of fire size and pattern of early succession in Yellowstone National Park. Ecological Monographs 67, 411–433.
Effects of fire size and pattern of early succession in Yellowstone National Park.Crossref | GoogleScholarGoogle Scholar |

Valese E, Conedera M, Held AC, Ascoli D (2014) Fire, humans and landscape in the European Alpine region during the Holocene. Anthropocene 6, 63–74.
Fire, humans and landscape in the European Alpine region during the Holocene.Crossref | GoogleScholarGoogle Scholar |

Van Couwenberghe R, Collet C, Lacombe E, Pierrat J-C, Gégout J-C (2010) Gap partitioning among temperate tree species across a regional soil gradient in windstorm-disturbed forests. Forest Ecology and Management 260, 146–154.
Gap partitioning among temperate tree species across a regional soil gradient in windstorm-disturbed forests.Crossref | GoogleScholarGoogle Scholar |

van Gils H, Odoi J, Andrisano T (2010) From monospecific to mixed forest after fire? Forest Ecology and Management 259, 433–439.
From monospecific to mixed forest after fire?Crossref | GoogleScholarGoogle Scholar |

Wagner S, Collet C, Madsen P, Nakashizuka T, Nyland R, Sagheb-Talebi K (2010) Beech regeneration research: from ecological to silvicultural aspects. Forest Ecology and Management 259, 2172–2182.
Beech regeneration research: from ecological to silvicultural aspects.Crossref | GoogleScholarGoogle Scholar |

Walker LR (1999) ‘Ecosystems of Disturbed Ground.’ (Elsevier: Amsterdam)

Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943.
Warming and earlier spring increase western U.S. forest wildfire activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFCitbo%3D&md5=63b22aab2b41b6316345dc06d421f040CAS | 16825536PubMed |

Wimmer RD, Dominick JR (2010) ‘Mass Media Research: an Introduction.’ (Wadsworth: Boston, MA)

Z’Graggen S (1992) Dendrohistometrisch-klimatologische Untersuchung an Buchen (Fagus sylvatica L.). (Universität Basel: Basel)

Zimmermann N, Yoccoz N, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America 106, 19723–19728.
Climatic extremes improve predictions of spatial patterns of tree species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFKltLk%3D&md5=6a0ba77634cb4564a49340edcc8ef92dCAS | 19897732PubMed |

Zuur A, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3–14.
A protocol for data exploration to avoid common statistical problems.Crossref | GoogleScholarGoogle Scholar |