Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data
Txomin Hermosilla A B D , Luis A. Ruiz A , Alexandra N. Kazakova C , Nicholas C. Coops B and L. Monika Moskal CA Geo-Environmental Cartography and Remote Sensing Group, Universitat Politècnica de València, Camino de Vera, s/n, E-46022 Valencia, Spain.
B Integrated Remote Sensing Studio, Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
C Remote Sensing and Geospatial Analysis Laboratory and Precision Forestry Cooperative, School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.
D Corresponding author. Email: txomin.hermosilla@live.forestry.ubc.ca
International Journal of Wildland Fire 23(2) 224-233 https://doi.org/10.1071/WF13086
Submitted: 24 May 2013 Accepted: 19 August 2013 Published: 14 November 2013
Abstract
Precise knowledge of fuel conditions is important for predicting fire hazards and simulating fire growth and intensity across the landscape. We present a methodology to retrieve and map forest canopy fuel and other forest structural parameters using small-footprint full-waveform airborne light detection and ranging (LiDAR) data. Full-waveform LiDAR sensors register the complete returned backscattered signal through time and can describe physical properties of the intercepted objects. This study was undertaken in a mixed forest dominated by Douglas-fir, occasionally mixed with other conifers, in north-west Oregon (United States). We extracted two sets of LiDAR metrics using pulse detection and waveform modelling and then constructed several predictive models using forward stepwise multiple linear regression. The resulting models explained ~80% of the variability for many of the canopy fuel and forest structure parameters: aboveground biomass (R2 = 0.84), quadratic mean diameter (R2 = 0.82), canopy height (R2 = 0.79), canopy base height (R2 = 0.78) and canopy fuel load (R2 = 0.79). The lowest performing models included basal area (R2 = 0.76), stand volume (R2 = 0.73), canopy bulk density (R2 = 0.67) and stand density index (R2 = 0.66). Our results indicate that full-waveform LiDAR systems show promise in systematically characterising the structure and canopy fuel loads of forests, which may enable accurate fire behaviour forecasting that in turn supports the development of prevention and planning policies.
References
Agee J (1996) ‘Fire Ecology of Pacific Northwest Forests.’ (Island Press: Washington, DC)Ahokas E, Kaasalainen S, Hyyppä J, Suomalainen J (2006) Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. In ‘ISPRS Archives – Volume XXXVI Part 1, 2006, ISPRS Commission I Symposium: From Sensors to Imagery’, 4–6 May 2006, Paris. (Eds A Baudoin, N Paparoditis) (Copernicus Publications for the International Society of Photogrammetry and Remote Sensing) Available at http://www.isprs.org/proceedings/XXXVI/part1/Papers/T03-11.pdf [Verified 23 October 2013]
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-122. (Ogden, UT)
Andersen HE, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LiDAR data. Remote Sensing of Environment 94, 441–449.
| Estimating forest canopy fuel parameters using LiDAR data.Crossref | GoogleScholarGoogle Scholar |
Andrews PL (2009) BehavePlus fire modeling system, version 5.0: Variables. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-213WWW Revised. (Fort Collins, CO)
Arroyo LA, Pascual C, Manzanera JA (2008) Fire models and methods to map fuel types: the role of remote sensing. Forest Ecology and Management 256, 1239–1252.
| Fire models and methods to map fuel types: the role of remote sensing.Crossref | GoogleScholarGoogle Scholar |
Ashworth A, Evans DL, Cooke WH, Londo A, Collins C, Neuenschwander A (2010) Predicting southeastern forest canopy heights and fire fuel models using GLAS data. Photogrammetric Engineering and Remote Sensing 76, 915–922.
Bailey RG (1995) Description of the ecoregions of the United States, 2nd edn. USDA Forest Service, Miscellaneous Publication 1391. (Washington, DC)
Buddenbaum H, Seeling S, Hill J (2013) Fusion of full-waveform LiDAR and imaging spectroscopy remote sensing data for the characterization of forest stands. International Journal of Remote Sensing 34, 4511–4524.
| Fusion of full-waveform LiDAR and imaging spectroscopy remote sensing data for the characterization of forest stands.Crossref | GoogleScholarGoogle Scholar |
Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of Environment 29, 147–159.
| Application of remote sensing and geographic information systems to forest fire hazard mapping.Crossref | GoogleScholarGoogle Scholar |
Chuvieco E, Salas J (1996) Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science 10, 333–345.
Chuvieco E, Riano D, Aguado I, Cocero D (2002) Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment. International Journal of Remote Sensing 23, 2145–2162.
| Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment.Crossref | GoogleScholarGoogle Scholar |
Chuvieco E, Riano D, Van Wagtendok J, Morsdof F (2003) Fuel loads and fuel type mapping, in wildland fire danger estimation and mapping: the role of remote sensing data. World Scientific 4, 119–142.
Chuvieco E, Cocero D, Riano D, Martin P, Martınez-Vega J, de la Riva J, Pérez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment 92, 322–331.
| Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating.Crossref | GoogleScholarGoogle Scholar |
Cruz MG, Alexander ME, Wakimoto RH (2003) Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire 12, 39–50.
| Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America.Crossref | GoogleScholarGoogle Scholar |
Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince S (2002) Estimation of tropical forest structural characteristics using large-footprint LiDAR. Remote Sensing of Environment 79, 305–319.
| Estimation of tropical forest structural characteristics using large-footprint LiDAR.Crossref | GoogleScholarGoogle Scholar |
Duong HV (2010) Processing and application of ICESat large footprint full waveform laser range data. PhD Thesis, Delft University of Technology.
Erdody TL, Moskal LM (2010) Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114, 725–737.
| Fusion of LiDAR and imagery for estimating forest canopy fuels.Crossref | GoogleScholarGoogle Scholar |
Falkowski MJ, Gessler PE, Morgan P, Hudak AT, Smith A (2005) Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. Forest Ecology and Management 217, 129–146.
| Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling.Crossref | GoogleScholarGoogle Scholar |
Finney MA (2004) FARSITE: fire area simulator–model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4, revised edition. (Ogden, UT)
Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. The Science of the Total Environment 262, 221–229.
| Climate change and forest fires.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotleru78%3D&md5=afad1ed04486da0a5f4e74743dbab746CAS | 11087028PubMed |
Flewelling JW, McFadden G (2011) LiDAR data and cooperative research at Panther Creek, Oregon. In ‘Proceedings of SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems’, 16–20 October 2011, Hobart, Tas., Australia. (Ed. J Rombouts) (Conference Design Pty Ltd: Hobart) Available at http://www.iufro.org/download/file/8240/1742/40205-silvilaser2011_pdf/ [Verified 23 October 2013]
García M, Popescu S, Riaño D, Zhao K, Neuenschwander A, Agca M, Chuvieco E (2012) Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment 123, 81–89.
| Characterization of canopy fuels using ICESat/GLAS data.Crossref | GoogleScholarGoogle Scholar |
Gholz HL (1979) Equations for estimating biomass and leaf area of plants in the Pacific Northwest. Oregon State University, Forest Research Laboratory, (Corvallis OR)
González-Olabarria JR, Rodríguez F, Fernández-Landa A, Mola-Yudego B (2012) Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management 282, 149–156.
| Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements.Crossref | GoogleScholarGoogle Scholar |
GuangCai X, Yong P, Zengyuana L, Dan Z, Luxia L (2012) Individual trees species classification using relative calibrated full-waveform LiDAR data. In ‘SilviLaser 2012: 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems’, 16–19 September 2012, Vancouver, BC. (Eds NCC Coops, MA Wulder) Paper SL2012-084. (Vancouver, BC) Available at http://silvilaser2012.com/wp-content/uploads/2011/11/Silvilaser2012_Full_Proceedings.pdf [Verified 23 October 2013]
Hall SA, Burke IC, Box DO, Kaufmann MR, Stoker JM (2005) Estimating stand structure using discrete-return LiDAR: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management 208, 189–209.
| Estimating stand structure using discrete-return LiDAR: an example from low density, fire prone ponderosa pine forests.Crossref | GoogleScholarGoogle Scholar |
Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters 32, L21S10
| ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure.Crossref | GoogleScholarGoogle Scholar |
Heinzel J, Koch B (2011) Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation 13, 152–160.
| Exploring full-waveform LiDAR parameters for tree species classification.Crossref | GoogleScholarGoogle Scholar |
Hippenstiel R, Brownson JR (2012) Computing solar energy potential of urban areas using airborne LiDAR and orthoimagery. In ‘Proceedings of the National Solar Conference and World Renewable Energy Forum 3, 2004–2008’. 13–17 May 2012, Denver, CO. (Boulder, CO) Available at http://ases.conference-services.net/resources/252/2859/pdf/SOLAR2012_0296_full%20paper.pdf [Verified 23 October 2013]
Höfle B, Hollaus M, Hagenauer J (2012) Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 67, 134–147.
| Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data.Crossref | GoogleScholarGoogle Scholar |
Hyde P, Dubayah R, Peterson B, Blair JB, Hofton M, Hunsaker C, Walker W (2005) Mapping forest structure for wildlife habitat analysis using waveform LiDAR: validation of montane ecosystems. Remote Sensing of Environment 96, 427–437.
| Mapping forest structure for wildlife habitat analysis using waveform LiDAR: validation of montane ecosystems.Crossref | GoogleScholarGoogle Scholar |
Keane RE, Burgan R, Van Wagtendonk J (2001) Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire 10, 301–319.
| Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling.Crossref | GoogleScholarGoogle Scholar |
Kim Y, Yang Z, Cohen WB, Pflugmacher D, Lauver CL, Vankat JL (2009) Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA small-footprint LiDAR data. Remote Sensing of Environment 113, 2499–2510.
| Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA small-footprint LiDAR data.Crossref | GoogleScholarGoogle Scholar |
Koetz B, Morsdorf F, Sun G, Ranson KJ, Itten K, Allgower B (2006) Inversion of a LiDAR waveform model for forest biophysical parameter estimation. Geoscience and Remote Sensing Letters, IEEE 3, 49–53.
| Inversion of a LiDAR waveform model for forest biophysical parameter estimation.Crossref | GoogleScholarGoogle Scholar |
Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999) LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment 70, 339–361.
| LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests.Crossref | GoogleScholarGoogle Scholar |
Listopad CM, Drake JB, Masters RE, Weishampel JF (2011) Portable and airborne small footprint LiDAR: forest canopy structure estimation of fire managed plots. Remote Sensing 3, 1284–1307.
| Portable and airborne small footprint LiDAR: forest canopy structure estimation of fire managed plots.Crossref | GoogleScholarGoogle Scholar |
Mallet C, Bretar F (2009) Full-waveform topographic LiDAR: state-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing 64, 1–16.
| Full-waveform topographic LiDAR: state-of-the-art.Crossref | GoogleScholarGoogle Scholar |
Mooney HA, Bonnicksen TM, Christensen NL, Lotan JE, Reiners WA (Eds) (1981) Fire regimes and ecosystem properties. Proceedings of the Conference, 11–15 December 1978, Honolulu, HI. USDA Forest Service, General Technical Report WO-26. (Washington DC).
Morsdorf F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B (2004) LiDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment 92, 353–362.
| LiDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management.Crossref | GoogleScholarGoogle Scholar |
Neuenschwander A (2012) Mapping vegetation structure in a wooded savanna at Freeman Ranch, TX using airborne waveform LiDAR. In ‘SilviLaser 2012: 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems’, 16–19 September 2012, Vancouver, BC. (Eds NCC Coops, MA Wulder) Paper SL2012-029. (Vancouver, BC) Available at http://silvilaser2012.com/wp-content/uploads/2011/11/Silvilaser2012_Full_Proceedings.pdf [Verified 23 October 2013]
Neuenschwander AL, Magruder LA, Tyler M (2009) Landcover classification of small-footprint, full-waveform LiDAR data. Journal of Applied Remote Sensing 3, 033544
| Landcover classification of small-footprint, full-waveform LiDAR data.Crossref | GoogleScholarGoogle Scholar |
Peterson B, Nelson K (2011) Developing a regional canopy fuels assessment strategy using multi-scale LiDAR. In ‘Proceedings of SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems’, 16–20 October 2011, Hobart, Tas., Australia. (Ed. J Rombouts) (Conference Design Pty Ltd: Hobart) Available at http://www.iufro.org/download/file/8240/1742/40205-silvilaser2011_pdf/ [Verified 23 October 2013]
Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004) Landcover attributes from ICESat GLAS data in central Siberia. In ‘Geoscience and Remote Sensing Symposium, 2004. IGARSS ‘04. Proceedings. 2004 IEEE International’, 20–24 September 2004, Anchorage, AK. Vol. 2, pp. 753–756. (The Institute of Electrical and Electronics Engineers: New York) Available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1368511 [Verified 23 October 2013]
Reich RM, Lundquist JE, Bravo VA (2004) Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire 13, 119–129.
| Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA.Crossref | GoogleScholarGoogle Scholar |
Reineke LH (1933) Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research 46, 627–638.
Reinhardt ED, Crookston NL (2003) The fire and fuels extension to the forest vegetation simulator. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-116, (Ogden, UT)
Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LiDAR data for the classification of deciduous and coniferous trees. International Journal of Remote Sensing 29, 1407–1431.
| Analysis of full waveform LiDAR data for the classification of deciduous and coniferous trees.Crossref | GoogleScholarGoogle Scholar |
Riaño D, Chuvieco E, Salas J, Palacios-Orueta A, Bastarrika A (2002) Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research 32, 1301–1315.
| Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems.Crossref | GoogleScholarGoogle Scholar |
Riaño D, Meier E, Allgöwer B, Chuvieco E, Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment 86, 177–186.
| Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling.Crossref | GoogleScholarGoogle Scholar |
Riaño D, Chuvieco E, Condes S, Gonzalez-Matesand J, Ustin SL (2004) Generation of crown bulk density for Pinus sylvestris L. from LiDAR. Remote Sensing of Environment 92, 345–352.
| Generation of crown bulk density for Pinus sylvestris L. from LiDAR.Crossref | GoogleScholarGoogle Scholar |
Riaño D, Chuvieco E, Ustin SL, Salas J, Rodríguez-Pérez JR, Ribeiro LM, Viegas DX, Moreno JM, Fernández H (2007) Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire 16, 341–348.
| Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging.Crossref | GoogleScholarGoogle Scholar |
Scott JH, Reinhardt ED (2001) Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-29. (Fort Collins, CO)
Skowronski N, Clark K, Nelson R, Hom J, Patterson M (2007) Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sensing of Environment 108, 123–129.
| Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey.Crossref | GoogleScholarGoogle Scholar |
Skowronski NS, Clark KL, Duveneck M, Hom J (2011) Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment 115, 703–714.
| Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems.Crossref | GoogleScholarGoogle Scholar |
Standish JT, Manning GH, Demaershalk JP (1985) Development of biomass equations for British Columbia tree species. Canadian Forestry Service, Pacific Forest Research Center, Information Report BC-X-264. (Victoria, BC)
Sumnall MJ, Hill RA, Hinsley SA (2012) The estimation of forest inventory parameters from small-footprint waveform and discrete return airborne LiDAR data. In ‘SilviLaser 2012: 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems’, 16–19 September 2012, Vancouver, BC. (Eds NCC Coops, MA Wulder) Paper SL2012-020. (Vancouver, BC) Available at http://silvilaser2012.com/wp-content/uploads/2011/11/Silvilaser2012_Full_Proceedings.pdf [Verified 23 October 2013]
van Leeuwen M, Nieuwenhuis M (2010) Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research 129, 749–770.
| Retrieval of forest structural parameters using LiDAR remote sensing.Crossref | GoogleScholarGoogle Scholar |
Vaughn NR, Moskal LM, Turnblom EC (2012) Tree species detection accuracies using discrete point LiDAR and airborne waveform LiDAR. Remote Sensing 4, 377–403.
| Tree species detection accuracies using discrete point LiDAR and airborne waveform LiDAR.Crossref | GoogleScholarGoogle Scholar |
Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners. International Journal of Remote Sensing 29, 1433–1452.
| 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners.Crossref | GoogleScholarGoogle Scholar |
Wilson BA, Ow CF, Heathcott M, Milne D, McCaffrey TM, Ghitter G, Franklin SE (1994) Landsat MSS classification of fire fuel types in Wood Buffalo National Park, northern Canada. Global Ecology and Biogeography Letters 4, 33–39.
| Landsat MSS classification of fire fuel types in Wood Buffalo National Park, northern Canada.Crossref | GoogleScholarGoogle Scholar |
Zhao K, Popescu S, Meng X, Pang Y, Agca M (2011) Characterizing forest canopy structure with LiDAR composite metrics and machine learning. Remote Sensing of Environment 115, 1978–1996.
| Characterizing forest canopy structure with LiDAR composite metrics and machine learning.Crossref | GoogleScholarGoogle Scholar |