Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec, Canada

Héloïse Le Goff A E , Mike D. Flannigan B , Yves Bergeron C and Martin P. Girardin D
+ Author Affiliations
- Author Affiliations

A Centre d’Étude de la Forêt, Université du Québec à Montréal, Succursale centre-ville, CP 8888, Montréal, QC H3C 3P8, Canada.

B Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, ON P6A 2E5, Canada.

C NSERC/UQAT/UQAM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, 445 Bd de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada.

D Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.

E Corresponding author. Email: heloise.legoff@nrcan.gc.ca

International Journal of Wildland Fire 16(5) 607-618 https://doi.org/10.1071/WF06151
Submitted: 17 November 2006  Accepted: 15 May 2007   Published: 26 October 2007

Abstract

The synchrony of regional fire regime shifts across the Quebec boreal forest, eastern Canada, suggests that regional fire regimes are influenced by large-scale climate variability. The present study investigated the relationship of the forest-age distribution, reflecting the regional fire activity, to large-scale climate variations. The interdecadal variation in forest fire activity in the Waswanipi area, north-eastern Canada, was reconstructed over 1720–2000. Next, the 1880–2000 reconstructed fire activity was analysed using different proxies of the Pacific Decadal Oscillation (PDO) and the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO). We estimated the global fire cycle around 132–153 years, with a major lengthening of the fire cycle from 99 years before 1940, to 282 years after 1940. Correlations between decadal fire activity and climate indices indicated a positive influence of the PDO. The positive influence of PDO on regional fire activity was also validated using t-tests between fire years and non-fire years between 1899 and 1996. Our results confirmed recent findings on the positive influence of the PDO on the fire activity over northern Quebec and the reinforcing role of the NAO in this relationship.

Additional keywords: bootstrapped Pearson correlations, fire history, Multidecadal Oscillation, North Atlantic Oscillation, Pacific Decadal Oscillation.


Acknowledgements

We gratefully thank D. Lesieur, B. Saint-Vincent, S. Valois, S. McLaughlin, D. Beauregard for their contributions to the field and laboratory work. We also thank D. Cyr for his guidance throughout the survival analyses. The comments and suggestions of S. Gauthier, P. Cheers, the associate editor and two anonymous reviewers contributed to improving the manuscript. The present research was supported by the Action Concertée Fonds Forestiers-FQRNT and the Sustainable Forest Management Network.


References


Allison PD (1995) ‘Survival Analysis Using SAS: a Practical Guide.’ (SAS Institute Inc.: Cary, NC)

Ambaum MHP, Hoskins BJ , Stepheson DB (2001) Arctic Oscillation or North Atlantic Oscillation? Journal of Climate  14, 3495–3507.
Crossref | GoogleScholarGoogle Scholar | ArcView GIS (1999) ‘ArcView GIS version 3.2.’ (Environmental Systems Research Institute: Redlands, CA)

Bergeron Y , Archambault S (1993) Decreasing frequency of forest fires in the southern boreal zone of Québec and its relation to global warming since the end of the ‘Little Ice Age’. The Holocene  3, 255–259.
Bonan GB (2002) ‘Ecological Climatology: Concepts and Applications.’ (Cambridge University Press: New York)

Bonsal BR , Lawford RG (1999) Teleconnections between El Niño and La Niña events and summer extended dry spells on the Canadian Prairies. International Journal of Climatology  19, 1445–1458.
Crossref | GoogleScholarGoogle Scholar | Bridge SRJ (2001) Spatial and temporal variations in the fire cycle across Ontario. Ontario Ministry of Natural Resources, Northeast Science and Technology. NEST Technical Report TR-043. (South Porcupine, ON)

Brown PM (2006) Climate effects on fire regimes and tree recruitment in Black Hill ponderosa pine forests. Ecology  87, 2500–2510.
Crossref | GoogleScholarGoogle Scholar | PubMed | Centre for Land and Biological Resources Research (1996). Soil Landscapes of Canada, v.2.2. (Agriculture and Agri-Food Canada, Research Branch: Ottawa, ON) Available at http://nlwis-snite1.agr.gc.ca/slc-ppc22/index.phtml [Verified 8 November 2006].

Collins BM, Omi PN , Chapman PL (2006) Regional relationships between climate and wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research  36, 699–709.
Crossref | GoogleScholarGoogle Scholar | Environment Canada (2004) Canadian climate normals or averages 1971–2000. (Environment Canada: Ottawa, ON) Available at http://climate.weatheroffice.ec.gc.ca/climate_normals/ [Verified 5 July 2006].

Flannigan MD , Harrington JB (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). Journal of Applied Meteorology  27, 441–452.
Crossref | GoogleScholarGoogle Scholar | Fritts HC (Ed.) (2001) ‘Tree Rings and Climate.’ (Blackburn Press: Caldwell, NJ)

Gillett NP, Weaver AJ, Zwiers FW , Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Journal of Geophysical Research  31, L18211.

Crossref | Holmes RL (1999) ‘Dendrochronology Program Library.’ (Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ)

Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science  269, 676–679.
Crossref | GoogleScholarGoogle Scholar | PubMed | Johnson EA (1992) ‘Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. Cambridge Studies in Ecology.’ (Cambridge University Press: New York, NY)

Johnson EA , Gutsell SL (1994) Fire frequency models, methods and interpretations. Advances in Ecological Research  25, 239–287.
Langlois M (1994) ‘Recueil d’Information sur les Incendies Forestiers au Québec de 1922 à 1993.’ Ministére des Ressources Naturelles du Québec, Direction de la conservation des forêts. (Québec, QC)

Larsen CPS (1996) Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1985. The Holocene  6, 449–456.
MRNQ (2000) ‘La Limite Nordique des Forêts Attribuables. Rapport Final du Comité, Ministère des Ressources Naturelles du Québec.’ (Québec, QC)

Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology  35, 651–665.
Crossref | GoogleScholarGoogle Scholar | Parisien MA, Hirsch K, Lavoie S, Todd B, Kafka V (2004). ‘Saskatchewan Fire Regime Analysis.’ Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre. (Edmonton, AB)

Phipps RL (1985) ‘Collecting, Preparing, Crossdating and Measuring Tree Increment Cores.’ USGS Water Resources Investigations Report 85–4148. pp. 5–35. (Denver, CO)

Reed WJ (2006) A note on fire frequency concepts and definitions. Canadian Journal of Forest Research  36, 1884–1888.
Crossref | GoogleScholarGoogle Scholar | Robitaille A, Saucier JP (1998) ‘Paysages Régionaux du Québec Méridional.’ (Les Publications du Québec: Sainte-Foy, QC)

Rodionov S , Overland JE (2005) Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES Journal of Marine Science  62, 328–332.
Crossref | GoogleScholarGoogle Scholar | SAS Institute Inc. (2000) ‘SAS OnlineDoc, Version 8.’ (SAS Institute Inc.: Cary, NC)

Shen C, Wang WC, Gong W , Hao Z (2006) A Pacific Decadal Oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophysical Research Letters  33, L03702.

Crossref | Stokes MA, Smiley TL (1968) ‘An Introduction to Tree-Ring Dating.’ (University of Chicago Press: Chicago, IL)

Swetnam TW (1993) Fire history and climate change in giant sequoia groves. Science  262, 885–889.
Crossref | GoogleScholarGoogle Scholar | PubMed | Systat Software Inc. (2004) ‘SYSTAT 11.’ (Systat Software: Richmond, CA)

Trouet V, Taylor AH, Carleton AM , Skinner CN (2006) Fire–climate interactions in forests of the American Pacific coast. Geophysical Research Letters  33, L18704.
Crossref | GoogleScholarGoogle Scholar | VoorTech Consulting (2001) ‘MeasureJ2X V3.1.’ (VoorTech Consulting: Holderness, NH)

Weber MG , Flannigan MD (1997) Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environmental Reviews  5, 145–166.
Crossref | GoogleScholarGoogle Scholar | Zar JH (1999) ‘Biostatistical Analysis.’ 4th edn. (Prentice Hall: Upper Saddle River, NJ)