Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands

Marco Hille* A and Jan den Ouden A B
+ Author Affiliations
- Author Affiliations

A Centre for Ecosystem Studies, Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands.

B Corresponding author. Fax: +31 317 478078; email: jan.denouden@wur.nl

International Journal of Wildland Fire 14(2) 153-159 https://doi.org/10.1071/WF04026
Submitted: 18 June 2004  Accepted: 3 December 2004   Published: 17 May 2005

Abstract

Samples of Scots pine (Pinus sylvestris L.) humus were burned under different moisture and fuel load scenarios to model humus consumption. For moisture levels below 120% on a dry mass basis, a parabolic increase of humus remaining with increasing moisture content was observed while, for higher moisture levels up to 300%, humus was reduced by a constant 10–15% on a dry mass basis. Both fuel load and humus moisture had a highly significant influence on humus consumption. Humus gross calorific value of Scots pine (19 509 KJ kg–1) is lower than that of other pine species. We found a desorption time-lag for humus moisture of 85 h in this study. Field data show a steady accumulation of humus in Central European Scots pine stands (up to 45 t ha–1 in 120-year-old stands). Amounts of litter remain constant over the different stand ages (~15 t ha–1). This study provides important information to predict humus consumption in Scots pine stands. The results can be used to build a fire severity and post-fire succession model for Scots pine stands in Central Europe.

Additional keywords: duff consumption; fire severity; Pinus sylvestris.


References


Agee JK (1998) Fire and pine ecosystems. In ‘Ecology and biogeography of Pinus’. (Ed. DM Richardson) pp. 193–218. (Cambridge University Press: Cambridge)

Anderson HE (1990) Moisture diffusivity and response time in fine forest fuels. Canadian Journal of Forest Research  20, 315–325.
Brown JK (1974) Handbook for inventorying downed woody material. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-16. (Ogden, UT)

Brown JK, Marsden MA, Ryan KC, Reinhardt ED (1985) Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains. USDA Forest Service, Intermountain Forest and Range Experiment Station General Research Paper INT-337. (Ogden, UT)

Brown JK, Reinhardt ED , Fischer WC (1991) Predicting humus and woody fuel consumption in northern Idaho prescribed fires. Forest Science  37, 1550–1566.
Burgan RE, Rothermel RC (1984) ‘BEHAVE: fire behavior prediction and fuel modeling system–fuel subsystem.’ USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-167. (Ogden, UT)

Byram GM (1963) Combustion of forest fuels. In ‘Forest fire. Control and use’. (Ed. KP Davis) pp. 61–89. (McGraw Hill: New York)

Clerkx APPM, van Hees AFM (1993) ‘Het vochtgehalte in de strooisellaag oder verschillende vegetaties in twee grove-dennenopstanden.’ IBN-rapport 040. (Instituut voor Bos- en Natuuronderzoek: Wageningen)

Chrosciewicz Z (1974) Evaluation of fire-produced seedbeds for jack pine regeneration in central Ontario. Canadian Journal of Forest Research  4, 455–457.
Fosberg MA (1977) Heat and water transport properties in conifer humus and humus. USDA Forest Service, Rocky Mountain Forest and Range Experimental Station Research Paper RM-195. (Fort Collins, CO)

Frandsen WH (1987) The influence of moisture and mineral soil on the combustion limits of smouldering forest humus. Canadian Journal of Forest Research  17, 1540–1544.
Hille M, Goldammer JG (2002) Dispatching and modeling of fires in Central European pine stands: new research and development approaches in Germany. In ‘Proceedings of the international workshop on improving dispatching for forest fire control’. (Ed. G Xanthopoulos) pp. 59–74. (MAIch: Chania, Greece)

Hille MG , Stephens SL (2005) Mixed conifer forest duff consumption during prescribed fires: Tree crown impacts. Forest Science ,
IPCC (2001) ‘Climatic change 2001. Working Group II: Impacts, adaptation and vulnerability.’ (Intergovernmental Panel on Climate Change: Geneva)

Johnson EA (1992) ‘Fire and vegetation dynamics: studies from the North American boreal forest.’ (Cambridge University Press: Cambridge)

Lawson BD, Dalrymple GN, Hawkes BC (1997) ‘Predicting forest floor moisture contents from duff moisture code values.’ Canadian Forest Service, Technology Transfer Notes 6.

Lembcke G, Knapp E, Dittmar O (1975) ‘DDR-Kiefern-Ertragstafel 1975.’ Abteilung Waldbau/Ertragskunde, Institut für Forstwissenschaften, Eberswalde, Germany.

Llorens P, Poch R, Latron J , Gallart F (1997) Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area. I. Monitoring design and results down to the event scale. Journal of Hydrology  199, 331–345.
Crossref | GoogleScholarGoogle Scholar | Missbach K (1973) ‘Waldbrand-Verhütung und Bekämpfung.’ (VEB Deutscher Landwirtschaftsverlag: Berlin) 126 pp.

Miyanishi K (2001) Duff consumption. In ‘Forest fires—behavior and ecological effects’. (Eds EA Johnson, K Miyanishi) pp. 437–475. (Academic Press: San Diego).

Miyanishi K , Johnson EA (2002) Process and patterns of humus consumption in the mixedwood boreal forest. Canadian Journal of Forest Research  32, 1285–1295.
Crossref | GoogleScholarGoogle Scholar | Miyanishi K, Bajtala MJ, Johnson EA (1999) Patterns of humus consumption in Pinus banksiana and Picea mariana stands. In ‘Proceedings of Sustainable Forest Management Network conference, science and practice: Sustaining the boreal forest’. pp. 112–115. (Sustainable Forest Management Network: Edmonton)

Möttönen M, Järvinen E, Hokkanen TJ, Kuuluvainen T , Ohtonen R (1999) Spatial distribution of soil ergosterol in the organic layer of a mature Scots pine (Pinus sylvestris L.) forest. Soil Biology and Chemistry  31, 503–516.
Crossref | GoogleScholarGoogle Scholar | Mutch RW, Gastineau OW (1970) ‘Timelag and equilibrium moisture content in reindeer lichen.’ USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-76. (Ogden, UT)

Nelson RM (1969) Some factors affecting the moisture timelag of woody material. USDA Forest Service South East Research Paper SE-44.

NWCG (1996) ‘Glossary of wildland fire terminology.’ NFES 1832, PMS 205. (National Wildfire Coordinating Group)

Ogee J , Brunet Y (2002) A forest floor model for heat and moisture including a litter layer. Journal of Hydrology  255, 212–233.
Crossref | GoogleScholarGoogle Scholar | Otto HJ (1994) ‘Waldökologie.’ (Ulmer: Stuttgart)

Reinhardt ED, Brown JK, Fischer WC, Graham RT (1991) Woody fuel and humus consumption by prescribed fire in northern Idaho mixed conifer logging slash. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-443. (Ogden, UT)

Robichaud PR , Miller SM (1999) Spatial interpolation and simulation of post-burn humus thickness after prescribed fire. International Journal of Wildland Fire  9, 137–143.
Crossref | GoogleScholarGoogle Scholar | Sandberg DV (1980) Duff reduction by prescribed underburning in Douglas-fir. USDA Forest Service, Pacific Northwest Research Station Research Paper PNW-272. (Portland, OR)

Schaap MG, Bouten W , Verstraaten JM (1997) Forest floor water content dynamics in a Douglas fir stand. Journal of Hydrology  201, 367–383.
Crossref | GoogleScholarGoogle Scholar | Schelhaas MJ, Varis S, Schuck A (2001) ‘Database on forest disturbances in Europe (DFDE).’ (European Forest Institute: Joensuu, Finland). Available at http://www.efi.fi/projects/dfde/ [Verified 10 March 2005]

Schimmel J , Granström A (1996) Fire severity and vegetation response in the boreal Swedish forest. Ecology  77, 1436–1450.
Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Forestry Technical Report 35. (Petawawa National Forestry Institute: Chalk River, ON)

Van Wagtendonk JW, Sydoriak WM , Benedict JM (1998a) Heat content variation of Sierra Nevada conifers. International Journal of Wildland Fire  8, 147–158.
Wittich KP (1998) ‘Waldbrandgefahrenvorhersage, Teil 1: Streufeuchtemodell.’ Beiträge zur Agrarmeteorologie (DWD intern: Offenbach am Main)

Zasada JC, Norum RA, Van Velhuizen RM , Teutsch CE (1983) Artificial regeneration of trees and tall shrubs in experimentally burned upland black spruce/feather moss stands in Alaska. Canadian Journal of Forest Research  13, 903–913.
Ziemer RR (1968) Soil moisture depletion patterns around scattered trees. USDA Forest Service Pacific Northwest Research Station Research Note PSW-166.

Zinke PJ (1962) The pattern of influence of individual forest trees on soil properties. Ecology  43, 130–133.




* Due to a tragic accident, Marco Hille died prior to the publication of this paper.