Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

A dynamic algorithm for wildfire mapping with NOAA/AVHRR data

R. Pu A B , P. Gong A B D , Z. Li C and J. Scarborough B
+ Author Affiliations
- Author Affiliations

A State Key Lab of Remote Sensing Science, IRSA, Box 9718, Beijing 100101, China.

B Center for Assessment and Monitoring of Forest and Environmental Resources, 151 Hilgard Hall, University of California, Berkeley, CA 94720-3110, USA. Telephone: +1 510 642 1351; fax: +1 510 643 5098; email: rpu@nature.berkeley.edu; gong@nature.berkeley.edu; jscar@gisc.berkeley.edu

C Department of Meteorology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742-2425, USA. Telephone: +1 301 405 6699; fax: +1 301 405 8468; email: zli@atmos.umd.edu

D Corresponding author.

International Journal of Wildland Fire 13(3) 275-285 https://doi.org/10.1071/WF03054
Submitted: 30 June 2003  Accepted: 5 April 2004   Published: 16 November 2004

Abstract

A wildfire-mapping algorithm is proposed based on fire dynamics, called the dynamic algorithm. It is applied to daily NOAA/AVHRR/HRPT data for wildland areas (scrub, chaparral, grassland, marsh, riparian forest, woodland, rangeland and forests) in California for September and October 1999. Daily AVHRR images acquired from two successive days are compared for active fire detection and burn scar mapping. The algorithm consists of four stages: data preparation; hotspot detection; burn scar mapping; and final confirmation of potential burn scar pixels. Preliminary comparisons between the result mapped by the dynamic algorithm and the fire polygons collected by the California Department of Forestry and Fire Protection through ground survey indicate that the algorithm can track burn scars at different developmental stages at a daily level. The comparisons between wildfire mapping results produced by a modified version of an existing algorithm and the dynamic algorithm also indicate this point. This is the major contribution of this algorithm to wildfire detection methods. The dynamic algorithm requires highly precise registration between consecutive images.


References


Anderson JR, Hardy EE, Roach JT , Witmer RE (1976) ‘A land use and land cover classification system for use with remote sensing data.’ U.S. Geological Survey Professional Paper No. 964. (Washington, DC) 28 pp.

Andreae MO, Atlas E, Cachier H, Cofer WR III, Harris GW, Helas G, Koppmann R, Lacaux JP ,  Ward DE (1996) Trace gas and aerosol emissions from Savanna fires. In ‘Biomass burning and global change, Vol. 1’. (Ed.  JS Levine )  pp. 278–295. (MIT Press: Cambridge, MA)

Arino O , Mellinotte JM (1998) The 1993 Africa fire map. International Journal of Remote Sensing  19, 2019–2023.
Crossref | GoogleScholarGoogle Scholar |

Arino O, Piccolini I, Siegert F, Eva H, Chuvieco E, Martin P, Li Z, Fraser RH, Kasischke E, Roy D, Pereira J , Stroppiana D (1999) Burn scars mapping methods. ‘Forest fire monitoring and mapping: a component of global observation of forest cover. Report of a workshop 3–5 November 1999’. (Eds F Ahern, J-M Grégoire, C Justice) pp. 198–223. (Joint Research Centre: Ispra, Italy)

Boles SH , Verbyla DL (2000) Comparison of three AVHRR-based fire detection algorithms for interior Alaska. Remote Sensing of Environment  72, 1–16.
Crossref | GoogleScholarGoogle Scholar |

Cahoon DR, Stocks BJ, Levine JS, Cofer WWR , Chung CC (1992) Evaluation of a technique for satellite-derived area estimation of forest fires. Journal of Geophysical Research  97, 3805–3814.


Di L , Rundquist DC (1994) A one-step algorithm for correction and calibration of AVHRR level 1b data. Photogrammetric Engineering and Remote Sensing  60, 165–171.


Dwyer E, Gregoire JM , Malingreau JP (1998) A global analysis of vegetation fires using satellite images: Spatial and temporal dynamics. Ambio  27, 175–181.


Flannigan MD , Vonder Haar TH (1986) Forest fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research  16, 975–982.


Flasse SP , Ceccato P (1996) A contextual algorithm for AVHRR fire detection. International Journal of Remote Sensing  17, 419–424.


Franca JR, Brustet JM , Fontan J (1995) Multispectral remote sensing of biomass burning in West Africa. Journal of Atmospheric Chemistry  22, 81–110.


Fraser RH , Li Z (2002) Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment  82, 95–110.
Crossref | GoogleScholarGoogle Scholar |

Fraser RH, Li Z , Cihlar J (2000) Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping. Remote Sensing of Environment  74, 362–376.
Crossref | GoogleScholarGoogle Scholar |

Giglio L, Kendall JD , Justice CO (1999) Evaluation of global fire detection using simulated AVHRR infrared data. International Journal of Remote Sensing  20, 1947–1985.
Crossref | GoogleScholarGoogle Scholar |

Harris AJL (1996) Towards automated fire monitoring from space: semi-automated mapping of the January 1994 New South Wales wildfires. International Journal of Wildland Fire  6, 107–116.


Holland RF (1986) ‘Preliminary descriptions of the terrestrial natural communities of California.’ (State of California, The Resources Agency, Nongame Heritage Program, Dept Fish. & Game: Sacramento) 156 pp.

Justice CO , Dowty P (1994) IGBP-Dros. Inf. Serv. satellite fire detection algorithm workshop technical report. IGBP-Dros. Inf. Serv. Working Paper No. 9, February, 1993. (NASA/GSFC: Greenbelt, MD)

Justice CO, Kendall JD, Dowty PR , Scholes RJ (1996) Satellite remote sensing of fires during the SAFARI campaign using NOAA advanced very high resolution radiometer data. Journal of Geophysical Research  101, 23 851–23 863.
Crossref | GoogleScholarGoogle Scholar |

Kaufman YJ, Tucker CJ , Fung I (1990) Remote sensing of biomass burning in the tropics. Journal of Geophysical Research  95, 9927–9939.


Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP , Setzer AW (1998) Potential global fire monitoring from EOS-MODros. Inf. Serv. Journal of Geophysical Research—Atmospheres  103, 32 215–32 238.
Crossref | GoogleScholarGoogle Scholar |

Kennedy PJ, Belward AS , Gregoire JM (1994) An improved approach to fire monitoring in West Africa using AVHRR data. International Journal of Remote Sensing  15, 2235–2255.


Khazenie N , Richardson KA (1993) Detection of oil fire smoke over water in the Persian Gulf region. Photogrammetric Engineering and Remote Sensing  59, 1271–1276.


Lee TM , Tag PM (1990) Improved detection of hotspots using the AVHRR 3.7 μm channel. Bulletin of The American Metrological Society  71, 1722–1730.
Crossref | GoogleScholarGoogle Scholar |

Levine JS (1991) ‘Global biomass burning: atmospheric, climatic, and biospheric implications.’ (MIT Press: Cambridge, MA)  569 pp.

Li Z , Giglio L (1999) A review of AVHRR-based fire detection algorithms. In ‘Forest fire monitoring and mapping: a component of global observation of forest cover. Report of a workshop 3–5 November 1999’. (Eds F Ahern, J-M Grégoire, C Justice) pp. 175–197. (Joint Research Centre: Ispra, Italy)

Li Z, Cihlar J, Moreau L, Huang F , Lee B (1997) Monitoring fire activities in the boreal ecosystem. Journal of Geophysical Research  102(D24), 29 611–29 624.


Li Z, Nadon S , Cihlar J (2000a) Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. International Journal of Remote Sensing  21, 3057–3069.
Crossref | GoogleScholarGoogle Scholar |

Li Z, Nadon S, Cihlar J , Stocks B (2000b) Satellite-based mapping of Canadian boreal forest fires: Evaluation and comparison of algorithms. International Journal of Remote Sensing  21, 3071–3082.
Crossref | GoogleScholarGoogle Scholar |

Li Z, Fraser R, Jin J, Abuelgasim AA, Csiszar I, Gong P, Pu R , Hao W (2003) Evaluation of algorithms for fire detection and mapping across North America from satellite. Journal of Geophysical Research  108(D2), 4076.
Crossref | GoogleScholarGoogle Scholar |

Malingreau JP , Justice CO (1997) ‘Definition and implementation of a global fire product derived from AVHRR data.’ 3rd IGBP-Dros. Inf. Serv. Fire Working Group Meeting Report. IGBP-Dros. Inf. Serv. Working Paper 17, Toulouse, France, 13–15 November 1996.

Muirhead K , Cracknell A (1985) Straw burning over Great Britain detected by AVHRR. International Journal of Remote Sensing  6, 827–833.


Pereira JMC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Transactions on Geoscience and Remote Sensing  37, 1217–1226.
Crossref | GoogleScholarGoogle Scholar |

Pozo D, Olmo EJ , Alados-Arboledas L (1997) Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sensing of Environment  60, 111–120.
Crossref | GoogleScholarGoogle Scholar |

Rauste Y, Herland E, Frelander H, Soini K, Kuoremaki T , Ruokari A (1997) Satellite-based forest fire detection for fire control in boreal forests. International Journal of Remote Sensing  18, 2641–2656.
Crossref | GoogleScholarGoogle Scholar |

Roy DP, Giglio L, Kendall JD , Justice CO (1999) Multi-temporal active-fire based burn scar detection algorithm. International Journal of Remote Sensing  20, 1031–1038.
Crossref | GoogleScholarGoogle Scholar |

Roy DP (2000) The impact of misregistration upon composited wide field of view satellite data and implications for change detection. IEEE Transactions on Geoscience and Remote Sensing  38, 2017–2032.
Crossref | GoogleScholarGoogle Scholar |

Roy DP, Lewis PE , Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach. Remote Sensing of Environment  83, 263–286.
Crossref | GoogleScholarGoogle Scholar |

Setzer AW , Pereira MC (1991) Amazonian biomass burnings in 1987 and an estimate of their tropospheric emission. Ambio  20, 19–22.


Stroppiana D, Pinnock S , Gregoire JM (2000) The global fire product: daily fire occurrence from April 1992 to December 1993 derived from NOAA AVHRR data. International Journal of Remote Sensing  21, 1279–1288.
Crossref | GoogleScholarGoogle Scholar |