World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts
Magnus Unemo A K , Monica M. Lahra B , Michelle Cole C , Patricia Galarza D , Francis Ndowa E , Irene Martin F , Jo-Anne R. Dillon G , Pilar Ramon-Pardo H , Gail Bolan I and Teodora Wi JA World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85 Örebro, Sweden.
B World Health Organization Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia.
C National Infection Service, Public Health England, London, UK.
D National Reference Laboratory for STDs, National Institute of Infectious Diseases – ANLIS ‘Dr Carlos G. Malbrán’, Buenos Aires, Argentina.
E Skin and Genitourinary Medicine Clinic, Harare, Zimbabwe.
F Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.
G University of Saskatchewan, Saskatoon, SK, Canada.
H Communicable Diseases and Environmental Determinants of Health Department Pan American Health Organization/World Health Organization, Washington, DC, USA.
I Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
J Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland.
K Corresponding author. Email: magnus.unemo@regionorebrolan.se
Sexual Health 16(5) 412-425 https://doi.org/10.1071/SH19023
Submitted: 7 February 2019 Accepted: 29 May 2019 Published: 23 August 2019
Journal Compilation © CSIRO 2019 Open Access CC BY-NC-ND
Abstract
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a serious public health problem, compromising the management and control of gonorrhoea globally. Resistance in N. gonorrhoeae to ceftriaxone, the last option for first-line empirical monotherapy of gonorrhoea, has been reported from many countries globally, and sporadic failures to cure especially pharyngeal gonorrhoea with ceftriaxone monotherapy and dual antimicrobial therapies (ceftriaxone plus azithromycin or doxycycline) have been confirmed in several countries. In 2018, the first gonococcal isolates with ceftriaxone resistance plus high-level azithromycin resistance were identified in England and Australia. The World Health Organization (WHO) Global Gonococcal Antimicrobial Surveillance Program (GASP) is essential to monitor AMR trends, identify emerging AMR and provide evidence for refinements of treatment guidelines and public health policy globally. Herein we describe the WHO GASP data from 67 countries in 2015–16, confirmed gonorrhoea treatment failures with ceftriaxone with or without azithromycin or doxycycline, and international collaborative actions and research efforts essential for the effective management and control of gonorrhoea. In most countries, resistance to ciprofloxacin is exceedingly high, azithromycin resistance is present and decreased susceptibility or resistance to ceftriaxone has emerged. Enhanced global collaborative actions are crucial for the control of gonorrhoea, including improved prevention, early diagnosis, treatment of index patient and partner (including test-of-cure), improved and expanded AMR surveillance (including surveillance of antimicrobial use and treatment failures), increased knowledge of correct antimicrobial use and the pharmacokinetics and pharmacodynamics of antimicrobials and effective drug regulations and prescription policies (including antimicrobial stewardship). Ultimately, rapid, accurate and affordable point-of-care diagnostic tests (ideally also predicting AMR and/or susceptibility), new therapeutic antimicrobials and, the only sustainable solution, gonococcal vaccine(s) are imperative.
Additional keywords: antimicrobial resistance, azithromycin, ceftriaxone, gonorrhoea, Neisseria gonorrhoeae, treatment.
References
[1] World Health Organization (WHO). Report on global sexually transmitted infection surveillance, 2018. Geneva: WHO; 2018. Available online at: https://www.who.int/reproductivehealth/publications/stis-surveillance-2018/en/ [verified February 2019].[2] Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, et al Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. Lancet 1997; 349 1868–73.
| Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1.Crossref | GoogleScholarGoogle Scholar | 9217758PubMed |
[3] World Health Organization (WHO). Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. Geneva: WHO; 2012. Available online at: http://www.who.int/reproductivehealth/publications/rtis/9789241503501/en/ [verified 28 June 2019].
[4] Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2014; 27 587–613.
| Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.Crossref | GoogleScholarGoogle Scholar | 24982323PubMed |
[5] World Health Organization (WHO). WHO guidelines for the treatment of Neisseria gonorrhoeae. Geneva: WHO; 2016. Available online at: http://www.who.int/reproductivehealth/publications/rtis/gonorrhoea-treatment-guidelines/en/ [verified 28 June 2019].
[6] Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med 2017; 14 e1002344
| Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action.Crossref | GoogleScholarGoogle Scholar | 28746372PubMed |
[7] Cole MJ, Spiteri G, Jacobsson S, Woodford N, Tripodo F, Amato-Gauci AJ, et al Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in Neisseria gonorrhoeae in 24 European countries, 2015. BMC Infect Dis 2017; 17 617
| Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in Neisseria gonorrhoeae in 24 European countries, 2015.Crossref | GoogleScholarGoogle Scholar | 28893203PubMed |
[8] Day MJ, Spiteri G, Jacobsson S, Woodford N, Amato-Gauci AJ, Cole MJ, et al Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect Dis 2018; 18 609
| Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016.Crossref | GoogleScholarGoogle Scholar | 30509194PubMed |
[9] Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, et al Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011; 55 3538–45.
| Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone.Crossref | GoogleScholarGoogle Scholar | 21576437PubMed |
[10] Cámara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D, Andreu A, et al Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 2012; 67 1858–60.
| Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain.Crossref | GoogleScholarGoogle Scholar | 22566592PubMed |
[11] Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012; 56 1273–80.
| High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure.Crossref | GoogleScholarGoogle Scholar | 22155830PubMed |
[12] Gianecini R, Oviedo C, Stafforini G, Galarza P. Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina. Emerg Infect Dis 2016; 22 1139–41.
| Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina.Crossref | GoogleScholarGoogle Scholar | 27191699PubMed |
[13] Lahra MM, Ryder N, While DM. A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N Engl J Med 2014; 371 1850–1.
| A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia.Crossref | GoogleScholarGoogle Scholar | 25372111PubMed |
[14] Deguchi T, Yasuda M, Hatazaki K, Kameyama K, Horie K, Kato T, et al New clinical strain of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone in Japan. Emerg Infect Dis 2016; 22 142–4.
| New clinical strain of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone in Japan.Crossref | GoogleScholarGoogle Scholar | 26689442PubMed |
[15] Nakayama S, Shimuta K, Furubayashi K, Kawahata T, Unemo M, Ohnishi M. New ceftriaxone and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother 2016; 60 4339–41.
| New ceftriaxone and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan.Crossref | GoogleScholarGoogle Scholar | 27067334PubMed |
[16] Lahra MM, Martin I, Demczuk W, Jennison AV, Lee KI, Nakayama SI, et al Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis 2018; 24 735–40.
| Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain.Crossref | GoogleScholarGoogle Scholar |
[17] Lefebvre B, Martin I, Demczuk W, Deshaies L, Michaud S, Labbé AC, et al Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis 2018; 24 381–3.
| Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017.Crossref | GoogleScholarGoogle Scholar |
[18] Terkelsen D, Tolstrup J, Johnsen CH, Lund O, Larsen HK, Worning P, et al Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill 2017; 22.
| Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017.Crossref | GoogleScholarGoogle Scholar | 29067905PubMed |
[19] Poncin T, Fouere S, Braille A, Camelena F, Agsous M, Bebear C, et al Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill 2018; 23.
| Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017.Crossref | GoogleScholarGoogle Scholar | 29845928PubMed |
[20] Golparian D, Rose L, Lynam A, Mohamed A, Bercot B, Ohnishi M, et al Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin in Ireland, August 2018. Euro Surveill 2018; 23.
| Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin in Ireland, August 2018.Crossref | GoogleScholarGoogle Scholar | 30482267PubMed |
[21] Eyre DW, Town K, Street T, Barker L, Sanderson N, Cole MJ, et al Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Euro Surveill 2019; 24.
| Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018.Crossref | GoogleScholarGoogle Scholar | 30862336PubMed |
[22] Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K, Barker L, et al Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 2018; 23.
| Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018.Crossref | GoogleScholarGoogle Scholar | 29991383PubMed |
[23] Whiley DM, Jennison A, Pearson J, Lahra MM. Genetic characterization of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 2018; 18 717–18.
| Genetic characterization of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin.Crossref | GoogleScholarGoogle Scholar | 29976521PubMed |
[24] Jennison AV, Whiley D, Lahra MM, Graham RM, Cole MJ, Hughes G, et al Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Euro Surveill 2019; 24.
| Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018.Crossref | GoogleScholarGoogle Scholar | 30808445PubMed |
[25] Golparian D, Ohlsson A, Janson H, Lidbrink P, Richtner T, Ekelund O, et al Four treatment failures of pharyngeal gonorrhoea with ceftriaxone (500 mg) or cefotaxime (500 mg), Sweden, 2013 and 2014 [published erratum appears in Euro Surveill 2014; 19: pii/20874]. Euro Surveill 2014; 19.
| Four treatment failures of pharyngeal gonorrhoea with ceftriaxone (500 mg) or cefotaxime (500 mg), Sweden, 2013 and 2014 [published erratum appears in Euro Surveill 2014; 19: pii/20874].Crossref | GoogleScholarGoogle Scholar | 25108533PubMed |
[26] Unemo M, Golparian D, Potonik M, Jeverica S. Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro Surveill 2012; 17 pii:20200
| 23231859PubMed |
[27] Read PJ, Limnios EA, McNulty A, Whiley D, Lahra MM. One confirmed and one suspected case of pharyngeal gonorrhoea treatment failure following 500 mg ceftriaxone in Sydney, Australia. Sex Health 2013; 10 460–2.
| One confirmed and one suspected case of pharyngeal gonorrhoea treatment failure following 500 mg ceftriaxone in Sydney, Australia.Crossref | GoogleScholarGoogle Scholar | 24028864PubMed |
[28] Tapsall J, Read P, Carmody C, Bourne C, Ray S, Limnios A, et al Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods. J Med Microbiol 2009; 58 683–7.
| Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods.Crossref | GoogleScholarGoogle Scholar | 19369534PubMed |
[29] Chen MY, Stevens K, Tideman R, Zaia A, Tomita T, Fairley CK, et al Failure of ceftriaxone 500 mg to eradicate pharyngeal gonorrhoea, Australia. J Antimicrob Chemother 2013; 68 1445–7.
| Failure of ceftriaxone 500 mg to eradicate pharyngeal gonorrhoea, Australia.Crossref | GoogleScholarGoogle Scholar |
[30] Unemo M, Golparian D, Hestner A. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill 2011; 16 pii:19792
| 22085601PubMed |
[31] Workowski KA, Bolan GA, Centers for Disease Control and Prevention Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 2015; 64 1–137.
| 26042815PubMed |
[32] Bignell C, Unemo M, European STI Guidelines Editorial Board. 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS 2013; 24 85–92.
| 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults.Crossref | GoogleScholarGoogle Scholar | 24400344PubMed |
[33] Romanowski B, Robinson J, Wong T. Gonococcal infections chapter. In Canadian guidelines on sexually transmitted infections. Ottawa: Public Health Agency of Canada; 2013. Available online at: www.phac-aspc.gc.ca/std-mts/sti-its/cgsti-ldcits/assets/pdf/section-5-6-eng.pdf [verified 28 June 2019].
[34] Australasian Sexual Health Alliance (ASHA). Gonorrhoea. In Australian STI management guidelines for use in primary care. Sydney: ASHA; 2016. Available online at: www.sti.guidelines.org.au/sexually-transmissible-infections/gonorrhoea#management [verified 28 June 2019].
[35] Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D, et al Failure of dual antimicrobial therapy in treatment of gonorrhea. N Engl J Med 2016; 374 2504–6.
| Failure of dual antimicrobial therapy in treatment of gonorrhea.Crossref | GoogleScholarGoogle Scholar | 27332921PubMed |
[36] Ndowa F, Lusti-Narasimhan M, Unemo M. The serious threat of multidrug-resistant and untreatable gonorrhoea: the pressing need for global action to control the spread of antimicrobial resistance, and mitigate the impact on sexual and reproductive health. Sex Transm Infect 2012; 88 317–8.
| The serious threat of multidrug-resistant and untreatable gonorrhoea: the pressing need for global action to control the spread of antimicrobial resistance, and mitigate the impact on sexual and reproductive health.Crossref | GoogleScholarGoogle Scholar | 22798629PubMed |
[37] World Health Organization (WHO). Global action plan on antimicrobial resistance. Geneva: WHO; 2015. Available online at: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ [verified 28 June 2019].
[38] World Health Organization (WHO). Global surveillance network for gonococcal antimicrobial susceptibility. WHO/VDT/90-452. Geneva: WHO; 1990. Available online at: http://apps.who.int/medicinedocs/documents/s16348e/s16348e.pdf [verified 28 June 2019].
[39] Kirkcaldy RD, Kidd S, Weinstock HS, Papp JR, Bolan GA. Trends in antimicrobial resistance in Neisseria gonorrhoeae in the USA: the Gonococcal Isolate Surveillance Project (GISP), January 2006–June 2012. Sex Transm Infect 2013; 89 iv5–10.
| Trends in antimicrobial resistance in Neisseria gonorrhoeae in the USA: the Gonococcal Isolate Surveillance Project (GISP), January 2006–June 2012.Crossref | GoogleScholarGoogle Scholar | 24243881PubMed |
[40] Kirkcaldy RD, Harvey A, Papp JR, Del Rio C, Soge OO, Holmes KK, et al Neisseria gonorrhoeae antimicrobial susceptibility surveillance – the Gonococcal Isolate Surveillance Project, 27 sites, United States, 2014. MMWR Surveill Summ 2016; 65 1–19.
| Neisseria gonorrhoeae antimicrobial susceptibility surveillance – the Gonococcal Isolate Surveillance Project, 27 sites, United States, 2014.Crossref | GoogleScholarGoogle Scholar | 27414503PubMed |
[41] Martin I, Sawatzky P, Liu G, Allen V, Lefebvre B, Hoang L, et al Decline in decreased cephalosporin susceptibility and increase in azithromycin resistance in Neisseria gonorrhoeae, Canada. Emerg Infect Dis 2016; 22 65–7.
| Decline in decreased cephalosporin susceptibility and increase in azithromycin resistance in Neisseria gonorrhoeae, Canada.Crossref | GoogleScholarGoogle Scholar | 26689114PubMed |
[42] Gianecini R, Romero MLM, Oviedo C, Vacchino M, Galarza P, Gonococcal Antimicrobial Susceptibility Surveillance Programme-Argentina (GASSP-AR) Working Group. Emergence and spread of Neisseria gonorrhoeae isolates with decreased susceptibility to extended-spectrum cephalosporins in Argentina, 2009 to 2013. Sex Transm Dis 2017; 44 351–5.
| Emergence and spread of Neisseria gonorrhoeae isolates with decreased susceptibility to extended-spectrum cephalosporins in Argentina, 2009 to 2013.Crossref | GoogleScholarGoogle Scholar | 28499284PubMed |
[43] Town K, Obi C, Quaye N, Chisholm S, Hughes G, GRASP Collaborative Group. Drifting towards ceftriaxone treatment failure in gonorrhoea: risk factor analysis of data from the Gonococcal Resistance to Antimicrobials Surveillance Programme in England and Wales. Sex Transm Infect 2017; 93 39–45.
| Drifting towards ceftriaxone treatment failure in gonorrhoea: risk factor analysis of data from the Gonococcal Resistance to Antimicrobials Surveillance Programme in England and Wales.Crossref | GoogleScholarGoogle Scholar | 27382010PubMed |
[44] Lahra MM, Enriquez RP, Prince of Wales Hospital, Randwick, for The National Neisseria Network. Australian Gonococcal Surveillance Programme, 1 July to 30 September 2016. Commun Dis Intell Q Rep 2017; 41 E109–10.
| 28385144PubMed |
[45] UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance. Strategies and laboratory methods for strengthening surveillance of sexually transmitted infections 2012. Geneva: World Health Organization; 2012. Available online at: http://apps.who.int/iris/bitstream/10665/75729/1/9789241504478_eng.pdf [verified 28 June 2019].
[46] Centers for Disease Control and Prevention (CDC) Antibiotic-resistant strains of Neisseria gonorrhoeae: policy guidelines for detection, management and control. MMWR 1987; 36 1S–18S.
[47] Ison CA, Deal C, Unemo M. Current and future treatment options for gonorrhoea. Sex Transm Infect 2013; 89 iv52–6.
| Current and future treatment options for gonorrhoea.Crossref | GoogleScholarGoogle Scholar | 24106339PubMed |
[48] Roy K, Wang SA, Meltzer MI. Optimizing treatment of antimicrobial-resistant Neisseria gonorrhoeae. Emerg Infect Dis 2005; 11 1265–73.
| Optimizing treatment of antimicrobial-resistant Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 16102317PubMed |
[49] El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative proteomics of the 2016 WHO Neisseria gonorrhoeae reference strains surveys vaccine candidates and antimicrobial resistance determinants. Mol Cell Proteomics 2019; 18 127–50.
| Quantitative proteomics of the 2016 WHO Neisseria gonorrhoeae reference strains surveys vaccine candidates and antimicrobial resistance determinants.Crossref | GoogleScholarGoogle Scholar | 30352803PubMed |
[50] Unemo M, Fasth O, Fredlund H, Limnios A, Tapsall J. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J Antimicrob Chemother 2009; 63 1142–51.
| Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes.Crossref | GoogleScholarGoogle Scholar | 19318360PubMed |
[51] Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S, Ohnishi M, et al The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71 3096–108.
| The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization.Crossref | GoogleScholarGoogle Scholar | 27432602PubMed |
[52] Unemo M, Ison CA, Cole M, Spiteri G, van de Laar M, Khotenashvili L. Gonorrhoea and gonococcal antimicrobial resistance surveillance networks in the WHO European Region, including the independent countries of the former Soviet Union. Sex Transm Infect 2013; 89 iv42–6.
| Gonorrhoea and gonococcal antimicrobial resistance surveillance networks in the WHO European Region, including the independent countries of the former Soviet Union.Crossref | GoogleScholarGoogle Scholar | 24243879PubMed |
[53] Lahra MM, Lo YR, Whiley DM. Gonococcal antimicrobial resistance in the Western Pacific Region. Sex Transm Infect 2013; 89 iv19–23.
| Gonococcal antimicrobial resistance in the Western Pacific Region.Crossref | GoogleScholarGoogle Scholar | 24243875PubMed |
[54] Dillon JA, Trecker MA, Thakur SD, Gonococcal Antimicrobial Surveillance Program Network in Latin America and the Caribbean 1990–2011. Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: challenges and opportunities. Sex Transm Infect 2013; 89 iv36–41.
| Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 24243878PubMed |
[55] Thakur SD, Araya P, Borthagaray G, Galarza P, Hernandez AL, Payares D, et al Resistance to ceftriaxone and azithromycin in Neisseria gonorrhoeae isolates from 7 countries of South America and the Caribbean: 2010–2011. Sex Transm Dis 2017; 44 157–60.
| 28178114PubMed |
[56] Bala M, Kakran M, Singh V, Sood S, Ramesh V, Members of WHO GASP SEAR Network. Monitoring antimicrobial resistance in Neisseria gonorrhoeae in selected countries of the WHO South-East Asia Region between 2009 and 2012: a retrospective analysis. Sex Transm Infect 2013; 89 iv28–35.
| Monitoring antimicrobial resistance in Neisseria gonorrhoeae in selected countries of the WHO South-East Asia Region between 2009 and 2012: a retrospective analysis.Crossref | GoogleScholarGoogle Scholar | 24243876PubMed |
[57] Ndowa FJ, Francis JM, Machiha A, Faye-Kette H, Fonkoua MC. Gonococcal antimicrobial resistance: perspectives from the African region. Sex Transm Infect 2013; 89 iv11–5.
| Gonococcal antimicrobial resistance: perspectives from the African region.Crossref | GoogleScholarGoogle Scholar | 24243873PubMed |
[58] Spiteri G, Cole M, Unemo M, Hoffmann S, Ison C, van de Laar M. The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) – a sentinel approach in the European Union (EU)/European Economic Area (EEA). Sex Transm Infect 2013; 89 iv16–18.
| The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) – a sentinel approach in the European Union (EU)/European Economic Area (EEA).Crossref | GoogleScholarGoogle Scholar | 24243874PubMed |
[59] George CRR, Enriquez RP, Gatus BJ, Whiley DM, Lo Y-R, Ishikawa N, et al Systematic review and survey of Neisseria gonorrhoeae antimicrobial resistance data in the Asia Pacific, 2011 to 2016. PLoS One 2019; 14 e0213312
| Systematic review and survey of Neisseria gonorrhoeae antimicrobial resistance data in the Asia Pacific, 2011 to 2016.Crossref | GoogleScholarGoogle Scholar | 30943199PubMed |
[60] Sirivongrangson P, Girdthep N, Sukwicha W, Buasakul P, Tongtoyai J, Weston E, et al The first year of the global Enhanced Gonococcal Antimicrobial Surveillance Programme (EGASP) in Bangkok, Thailand, 2015–2016. PLoS One 2018; 13 e0206419
| The first year of the global Enhanced Gonococcal Antimicrobial Surveillance Programme (EGASP) in Bangkok, Thailand, 2015–2016.Crossref | GoogleScholarGoogle Scholar | 30412586PubMed |
[61] Gianecini RA, Golparian D, Zittermann S, Litvik A, Gonzalez S, Oviedo C, et al Genome-based epidemiology and antimicrobial resistance determinants in Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina, 2011–2016. J Antimicrob Chemother 2019; 74 1551–9.
| Genome-based epidemiology and antimicrobial resistance determinants in Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina, 2011–2016.Crossref | GoogleScholarGoogle Scholar | 30820563PubMed |
[62] Bazzo ML, Golfetto L, Gaspar PC, Pires AF, Ramos MC, Franchini M, et al First nationwide antimicrobial susceptibility surveillance for Neisseria gonorrhoeae in Brazil, 2015–16. J Antimicrob Chemother 2018; 73 1854–61.
| First nationwide antimicrobial susceptibility surveillance for Neisseria gonorrhoeae in Brazil, 2015–16.Crossref | GoogleScholarGoogle Scholar | 29635367PubMed |
[63] Yéo A, Kouamé-Blavo B, Kouamé CE, Ouattara A, Yao AC, Gbedé BD, et al Establishment of a gonococcal antimicrobial surveillance programme (GASP), in accordance with WHO standards, in Côte d’Ivoire, Western Africa, 2014–2017. Sex Transm Dis 2019; 46 179–84.
| Establishment of a gonococcal antimicrobial surveillance programme (GASP), in accordance with WHO standards, in Côte d’Ivoire, Western Africa, 2014–2017.Crossref | GoogleScholarGoogle Scholar | 30461598PubMed |
[64] Latif AS, Gwanzura L, Machiha A, Ndowa F, Tarupiwa A, Gudza-Mugabe M, et al Antimicrobial susceptibility in Neisseria gonorrhoeae isolates from five sentinel surveillance sites in Zimbabwe, 2015–2016. Sex Transm Infect 2018; 94 62–6.
| Antimicrobial susceptibility in Neisseria gonorrhoeae isolates from five sentinel surveillance sites in Zimbabwe, 2015–2016.Crossref | GoogleScholarGoogle Scholar | 28476914PubMed |
[65] Lewis DA. Will targeting oropharyngeal gonorrhoea delay the further emergence of drug-resistant Neisseria gonorrhoeae strains? Sex Transm Infect 2015; 91 234–7.
| Will targeting oropharyngeal gonorrhoea delay the further emergence of drug-resistant Neisseria gonorrhoeae strains?Crossref | GoogleScholarGoogle Scholar | 25911525PubMed |
[66] Chow EPF, Maddaford K, Trumpour S, Fairley CK. Translating mouthwash use for gonorrhoea prevention into a public health campaign: identifying current knowledge and research gaps. Sex Health 2019;
| Translating mouthwash use for gonorrhoea prevention into a public health campaign: identifying current knowledge and research gaps.Crossref | GoogleScholarGoogle Scholar | 31203836PubMed |
[67] Tapsall JW, Ndowa F, Lewis DA, Unemo M. Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther 2009; 7 821–34.
| Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 19735224PubMed |
[68] Chisholm SA, Mouton JW, Lewis DA, Nichols T, Ison CA, Livermore DM. Cephalosporin MIC creep among gonococci: time for a pharmacodynamics rethink? J Antimicrob Chemother 2010; 65 2141–8.
| Cephalosporin MIC creep among gonococci: time for a pharmacodynamics rethink?Crossref | GoogleScholarGoogle Scholar | 20693173PubMed |
[69] Connolly KL, Eakin AE, Gomez C, Osborn BL, Unemo M, Jerse AE. Pharmacokinetic data are predictive of in vivo efficacy for cefixime and ceftriaxone against susceptible and resistant Neisseria gonorrhoeae strains in the gonorrhea mouse model. Antimicrob Agents Chemother 2019; 63 e01644-18
| Pharmacokinetic data are predictive of in vivo efficacy for cefixime and ceftriaxone against susceptible and resistant Neisseria gonorrhoeae strains in the gonorrhea mouse model.Crossref | GoogleScholarGoogle Scholar | 30642924PubMed |
[70] Drusano GL. Pre-clinical in vitro infection models. Curr Opin Pharmacol 2017; 36 100–6.
| Pre-clinical in vitro infection models.Crossref | GoogleScholarGoogle Scholar | 29035729PubMed |
[71] Vincent LR, Kerr SR, Tan Y, Tomberg J, Raterman EL, Dunning Hotopp JC, et al In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. MBio 2018; 9 e01905-17
| In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 29615507PubMed |
[72] Ko KKK, Chio MTW, Goh SS, Tan AL, Koh TH, Rahman NBA. First case of ceftriaxone-resistant multidrug-resistant Neisseria gonorrhoeae in Singapore. Antimicrob Agents Chemother 2019; 63 e02624-18
| First case of ceftriaxone-resistant multidrug-resistant Neisseria gonorrhoeae in Singapore.Crossref | GoogleScholarGoogle Scholar | 30858209PubMed |
[73] Demczuk W, Sidhu S, Unemo M, Whiley DM, Allen VG, Dillon JR, et al Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR): a novel antimicrobial resistance multilocus typing scheme for tracking the global dissemination of N. gonorrhoeae strains. J Clin Microbiol 2017; 55 1454–68.
| Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR): a novel antimicrobial resistance multilocus typing scheme for tracking the global dissemination of N. gonorrhoeae strains.Crossref | GoogleScholarGoogle Scholar | 28228492PubMed |
[74] Igawa G, Yamagishi Y, Lee KI, Dorin M, Shimuta K, Suematsu H, et al Neisseria cinerea with high ceftriaxone MIC is a source of ceftriaxone and cefixime resistance-mediating penA sequences in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2018; 62 e02069-17
| Neisseria cinerea with high ceftriaxone MIC is a source of ceftriaxone and cefixime resistance-mediating penA sequences in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 29311079PubMed |
[75] Wadsworth CB, Arnold BJ, Sater MRA, Grad YH. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. MBio 2018; 9 e01419-18
| Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 30087172PubMed |
[76] Rouquette-Loughlin CE, Reimche JL, Balthazar JT, Dhulipala V, Gernert KM, Kersh EN, et al Mechanistic basis for decreased antimicrobial susceptibility in a clinical isolate of Neisseria gonorrhoeae possessing a mosaic-like mtr efflux pump locus. MBio 2018; 9 e02281-18
| Mechanistic basis for decreased antimicrobial susceptibility in a clinical isolate of Neisseria gonorrhoeae possessing a mosaic-like mtr efflux pump locus.Crossref | GoogleScholarGoogle Scholar | 30482834PubMed |
[77] Donà V, Low N, Golparian D, Unemo M. Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae. Expert Rev Mol Diagn 2017; 17 845–59.
| Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 28741392PubMed |
[78] Low N, Unemo M. Molecular tests for the detection of antimicrobial resistant Neisseria gonorrhoeae: when, where, and how to use? Curr Opin Infect Dis 2016; 29 45–51.
| Molecular tests for the detection of antimicrobial resistant Neisseria gonorrhoeae: when, where, and how to use?Crossref | GoogleScholarGoogle Scholar | 26658656PubMed |
[79] Goire N, Lahra MM, Chen M, Donovan B, Fairley CK, Guy R, et al Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 2014; 12 223–9.
| Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance.Crossref | GoogleScholarGoogle Scholar | 24509781PubMed |
[80] Sadiq ST, Mazzaferri F, Unemo M. Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and Mycoplasma genitalium. Sex Transm Infect 2017; 93 S65–8.
| Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and Mycoplasma genitalium.Crossref | GoogleScholarGoogle Scholar | 28684610PubMed |
[81] Whiley DM, Trembizki E, Buckley C, Freeman K, Baird RW, Beaman M, et al Molecular antimicrobial resistance surveillance for Neisseria gonorrhoeae, Northern Territory, Australia. Emerg Infect Dis 2017; 23 1478–85.
| Molecular antimicrobial resistance surveillance for Neisseria gonorrhoeae, Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar | 28820128PubMed |
[82] Goire N, Ohnishi M, Limnios AE, Lahra MM, Lambert SB, Nimmo GR, et al Enhanced gonococcal antimicrobial surveillance in the era of ceftriaxone resistance: a real-time PCR assay for direct detection of the Neisseria gonorrhoeae H041 strain. J Antimicrob Chemother 2012; 67 902–5.
| Enhanced gonococcal antimicrobial surveillance in the era of ceftriaxone resistance: a real-time PCR assay for direct detection of the Neisseria gonorrhoeae H041 strain.Crossref | GoogleScholarGoogle Scholar | 22207596PubMed |
[83] Goire N, Lahra MM, Ohnishi M, Hogan T, Liminios AE, Nissen MD, et al Polymerase chain reaction-based screening for the ceftriaxone-resistant Neisseria gonorrhoeae F89 strain. Euro Surveill 2013; 18 20444
| Polymerase chain reaction-based screening for the ceftriaxone-resistant Neisseria gonorrhoeae F89 strain.Crossref | GoogleScholarGoogle Scholar | 23594520PubMed |
[84] Whiley DM, Mhango L, Jennison AV, Nimmo G, Lahra MM. Direct detection of penA gene associated with ceftriaxone-resistant Neisseria gonorrhoeae FC428 strain by using PCR. Emerg Infect Dis 2018; 24 1573–5.
| Direct detection of penA gene associated with ceftriaxone-resistant Neisseria gonorrhoeae FC428 strain by using PCR.Crossref | GoogleScholarGoogle Scholar | 30016236PubMed |
[85] Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, et al WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemother 2017; 72 1937–47.
| WGS to predict antibiotic MICs for Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 28333355PubMed |
[86] Harris SR, Cole MJ, Spiteri G, Sánchez-Busó L, Golparian D, Jacobsson S, et al Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect Dis 2018; 18 758–68.
| Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey.Crossref | GoogleScholarGoogle Scholar | 29776807PubMed |
[87] Golparian D, Donà V, Sánchez-Busó L, Foerster S, Harris S, Endimiani A, et al Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Sci Rep 2018; 8 17596
| Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer.Crossref | GoogleScholarGoogle Scholar | 30514867PubMed |
[88] Hall CL, Harrison MA, Pond MJ, Chow C, Harding-Esch EM, Sadiq ST. Genotypic determinants of fluoroquinolone and macrolide resistance in Neisseria gonorrhoeae. Sex Health 2019;
| Genotypic determinants of fluoroquinolone and macrolide resistance in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 31366421PubMed |
[89] Tayimetha CY, Unemo M. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates in Yaoundé, Cameroon from 2009 to 2014. Sex Transm Dis 2018; 45 e101–3.
| 30234796PubMed |
[90] Sawatzky P, Liu G, Dillon JA, Allen V, Lefebvre B, Hoang L, et al Quality assurance for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Canada, 2003 to 2012. J Clin Microbiol 2015; 53 3646–9.
| Quality assurance for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Canada, 2003 to 2012.Crossref | GoogleScholarGoogle Scholar | 26338862PubMed |
[91] Sawatzky P, Martin I, Galarza P, Carvallo MET, Araya Rodriguez P, Cruz OMS, et al Quality assurance for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Latin American and Caribbean countries, 2013–2015. Sex Transm Infect 2018; 94 479–82.
| Quality assurance for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Latin American and Caribbean countries, 2013–2015.Crossref | GoogleScholarGoogle Scholar | 29674407PubMed |
[92] Cole MJ, Quaye N, Jacobsson S, Day M, Fagan E, Ison C, et al Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data. BMC Infect Dis 2019; 19 281
| Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data.Crossref | GoogleScholarGoogle Scholar | 30909883PubMed |
[93] Demczuk W, Lynch T, Martin I, Van Domselaar G, Graham M, Bharat A, et al Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J Clin Microbiol 2015; 53 191–200.
| Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013.Crossref | GoogleScholarGoogle Scholar | 25378573PubMed |
[94] Demczuk W, Martin I, Peterson S, Bharat A, Van Domselaar G, Graham M, et al Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 2016; 54 1304–13.
| Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014.Crossref | GoogleScholarGoogle Scholar | 26935729PubMed |
[95] Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR, Goldstein E, et al Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect Dis 2014; 14 220–6.
| Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study.Crossref | GoogleScholarGoogle Scholar | 24462211PubMed |
[96] Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J Infect Dis 2016; 214 1579–87.
| Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013.Crossref | GoogleScholarGoogle Scholar | 27638945PubMed |
[97] Jacobsson S, Golparian D, Cole M, Spiteri G, Martin I, Bergheim T, et al WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother 2016; 71 3109–16.
| WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014.Crossref | GoogleScholarGoogle Scholar | 27432597PubMed |
[98] De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, et al Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect Dis 2016; 16 1295–303.
| Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study.Crossref | GoogleScholarGoogle Scholar | 27427203PubMed |
[99] Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, Del Rio C, Didelot X, et al Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance. PeerJ 2015; 3 e806
| Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance.Crossref | GoogleScholarGoogle Scholar | 25780762PubMed |
[100] Ryan L, Golparian D, Fennelly N, Rose L, Walsh P, Lawlor B, et al Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin. Eur J Clin Microbiol Infect Dis 2018; 37 1661–72.
| Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin.Crossref | GoogleScholarGoogle Scholar | 29882175PubMed |
[101] Jönsson A, Jacobsson S, Foerster S, Cole MJ, Unemo M. Performance characteristics of newer MIC gradient strip tests compared with the Etest for antimicrobial susceptibility testing of Neisseria gonorrhoeae. APMIS 2018; 126 822–7.
| Performance characteristics of newer MIC gradient strip tests compared with the Etest for antimicrobial susceptibility testing of Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 30191618PubMed |
[102] Chow EP, Howden BP, Walker S, Lee D, Bradshaw CS, Chen MY, et al Antiseptic mouthwash against pharyngeal Neisseria gonorrhoeae: a randomised controlled trial and an in vitro study. Sex Transm Infect 2017; 93 88–93.
| Antiseptic mouthwash against pharyngeal Neisseria gonorrhoeae: a randomised controlled trial and an in vitro study.Crossref | GoogleScholarGoogle Scholar | 27998950PubMed |
[103] Jerse AE, Deal CD. Vaccine research for gonococcal infections: where are we? Sex Transm Infect 2013; 89 iv63–8.
| Vaccine research for gonococcal infections: where are we?Crossref | GoogleScholarGoogle Scholar | 24243883PubMed |
[104] Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42 928–41.
| Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development.Crossref | GoogleScholarGoogle Scholar | 26805040PubMed |
[105] Petousis-Harris H, Paynter J, Morgan J, Saxton P, McArdle B, Goodyear-Smith F, et al Effectiveness of a Group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 2017; 390 1603–10.
| Effectiveness of a Group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study.Crossref | GoogleScholarGoogle Scholar | 28705462PubMed |
[106] Unemo M, Sikora AE. Infection: proof of principle for effectiveness of a gonorrhoea vaccine. Nat Rev Urol 2017; 14 643–4.
| Infection: proof of principle for effectiveness of a gonorrhoea vaccine.Crossref | GoogleScholarGoogle Scholar | 28858332PubMed |
[107] Gottlieb SL, Johnston C. Future prospects for new vaccines against sexually transmitted infections. Curr Opin Infect Dis 2017; 30 77–86.
| 27922851PubMed |
[108] Liu Y, Hammer LA, Liu W, Hobbs MM, Zielke RA, Sikora AE, et al Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model. Mucosal Immunol 2017; 10 1594–608.
| Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model.Crossref | GoogleScholarGoogle Scholar | 28272393PubMed |
[109] Gottlieb SL, Jerse AE, Delany-Moretlwe S, Deal C, Giersing BK. Advancing vaccine development for gonorrhoea and the Global STI Vaccine Roadmap. Sex Health 2019; In press.
[110] Clifton S, Town K, Furegato M, Cole M, Mohammed H, Woodhall SC, et al Is previous azithromycin treatment associated with azithromycin resistance in Neisseria gonorrhoeae? A cross-sectional study using national surveillance data in England. Sex Transm Infect 2018; 94 421–6.
| Is previous azithromycin treatment associated with azithromycin resistance in Neisseria gonorrhoeae? A cross-sectional study using national surveillance data in England.Crossref | GoogleScholarGoogle Scholar | 29511067PubMed |
[111] Unemo M, Workowski K. Dual antimicrobial therapy for gonorrhoea: what is the role of azithromycin? Lancet Infect Dis 2018; 18 486–8.
| Dual antimicrobial therapy for gonorrhoea: what is the role of azithromycin?Crossref | GoogleScholarGoogle Scholar | 29523498PubMed |
[112] Jacobsson S, Paukner S, Golparian D, Jensen JS, Unemo M. In vitro activity of the novel pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively-drug resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2017; 61 e01497-17
| In vitro activity of the novel pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively-drug resistant Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 28893785PubMed |
[113] Paukner S, Gruss A, Jensen JS. In vitro activity of lefamulin against sexually transmitted bacterial pathogens. Antimicrob Agents Chemother 2018; 62 e02380-17
| In vitro activity of lefamulin against sexually transmitted bacterial pathogens.Crossref | GoogleScholarGoogle Scholar | 29530863PubMed |
[114] Jacobsson S, Mason C, Khan N, Meo P, Unemo M. In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae – future treatment option for gonorrhoea? J Antimicrob Chemother 2019; 74 1591–4.
| In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae – future treatment option for gonorrhoea?Crossref | GoogleScholarGoogle Scholar | 30778550PubMed |
[115] Jacobsson S, Golparian D, Scangarella-Oman N, Unemo M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J Antimicrob Chemother 2018; 73 2072–7.
| In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 29796611PubMed |
[116] Scangarella-Oman NE, Hossain M, Dixon PB, Ingraham K, Min S, Tiffany CA, et al Microbiological analysis from a Phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae. Antimicrob Agents Chemother 2018; 62 e01221-18
| Microbiological analysis from a Phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 30249694PubMed |
[117] Taylor SN, Morris DH, Avery AK, Workowski KA, Batteiger BE, Tiffany CA, et al Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a Phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin Infect Dis 2018; 67 504–12.
| Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a Phase 2, randomized, dose-ranging, single-oral dose evaluation.Crossref | GoogleScholarGoogle Scholar | 29617982PubMed |
[118] Taylor SN, Marrazzo J, Batteiger BE, Hook EW, Seña AC, Long J, et al Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N Engl J Med 2018; 379 1835–45.
| Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea.Crossref | GoogleScholarGoogle Scholar | 30403954PubMed |
[119] Basarab GS, Kern GH, McNulty J, Mueller JP, Lawrence K, Vishwanathan K, et al Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep 2015; 5 11827
| Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.Crossref | GoogleScholarGoogle Scholar | 26168713PubMed |
[120] Foerster S, Golparian D, Jacobsson S, Hathaway LJ, Low N, Shafer WM, et al Genetic resistance determinants, in vitro time–kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front Microbiol 2015; 6 1377
| Genetic resistance determinants, in vitro time–kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 26696986PubMed |
[121] Jacobsson S, Golparian D, Alm RA, Huband M, Mueller J, Jensen JS, et al High in-vitro activity of the novel spiropyrimidinetrione AZD0914, a DNA gyrase inhibitor, against multidrug resistant Neisseria gonorrhoeae isolates suggests a new effective option for oral treatment of gonorrhea. Antimicrob Agents Chemother 2014; 58 5585–8.
| High in-vitro activity of the novel spiropyrimidinetrione AZD0914, a DNA gyrase inhibitor, against multidrug resistant Neisseria gonorrhoeae isolates suggests a new effective option for oral treatment of gonorrhea.Crossref | GoogleScholarGoogle Scholar | 24982070PubMed |
[122] Unemo M, Ringlander J, Wiggins C, Fredlund H, Jacobsson S, Cole M, European Collaborative Group. High in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (also known as AZD0914) among 873 contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries during 2012–2014. Antimicrob Agents Chemother 2015; 59 5220–5.
| High in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (also known as AZD0914) among 873 contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries during 2012–2014.Crossref | GoogleScholarGoogle Scholar | 26077246PubMed |
[123] Unemo M, Bradshaw CS, Hocking JS, de Vries HJC, Francis SC, Mabey D, et al Sexually transmitted infections: challenges ahead. Lancet Infect Dis 2017; 17 e235–79.
| Sexually transmitted infections: challenges ahead.Crossref | GoogleScholarGoogle Scholar | 28701272PubMed |
[124] Lewis D. New treatment options for Neisseria gonorrhoeae in the era of emerging antimicrobial resistance. Sex Health 2019;
| New treatment options for Neisseria gonorrhoeae in the era of emerging antimicrobial resistance.Crossref | GoogleScholarGoogle Scholar | 31292063PubMed |