Mouse oocyte meiosis is disturbed by knockdown of Suv4-20h
Kai Xiong A B , Wei Wu A B , Xuguang Wang A , Xueshan Ma A , Jie Chen A and Honglin Liu A CA College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
B These authors contributed equally to this study.
C Corresponding author. Email: liuhonglin@263.net
Reproduction, Fertility and Development 25(3) 503-510 https://doi.org/10.1071/RD12116
Submitted: 12 April 2012 Accepted: 14 June 2012 Published: 10 August 2012
Abstract
Suv4-20h was initially characterised as a histone methyltransferase (HMTase) that catalyses lysine 20 of histone H4 dimethylation (H4K20me2) and trimethylation (H4K20me3). In the present study, using RNA interference (RNAi), we found that Suv4-20h activity is required for the fidelity of chromosome distribution during meiosis in the mammalian oocyte. Knockdown of Suv4-20h resulted in attenuation of H4K20me3 and the accumulation of H4K20me1. After Suv4-20h knockdown, oocytes exhibited an increasing percentage of aberrant chromosome alignment in MI, together with a decreasing percentage of polar body I extrusion. We conclude that Suv4-20h may be required for normal chromosome behaviour and that it is crucial for proper meiotic progression in mammalian oocytes.
Additional keywords: epigenetics, histone modification.
References
Collins, R. E., Tachibana, M., Tamaru, H., Smith, K. M., Jia, D., Zhang, X., Selker, E. U., Shinkai, Y., and Cheng, X. (2005). In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J. Biol. Chem. 280, 5563–5570.| In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCls7o%3D&md5=87e87a2c1b2023fc6240688546cc64e5CAS | 15590646PubMed |
Couture, J. F., Collazo, E., Brunzelle, J. S., and Trievel, R. C. (2005). Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev. 19, 1455–1465.
| Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslChu7w%3D&md5=10bf6cd60b152cfd866ca9fc3c88f262CAS | 15933070PubMed |
Craig, J. M., Earle, E., Canham, P., Wong, L. H., Anderson, M., and Choo, K. H. (2003). Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum. Mol. Genet. 12, 3109–3121.
| Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVSnt74%3D&md5=75a4a65373caffc743c7d721d871a8eeCAS | 14519686PubMed |
Dernburg, A. F., Sedat, J. W., and Hawley, R. S. (1996). Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86, 135–146.
| Direct evidence of a role for heterochromatin in meiotic chromosome segregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlGnsbg%3D&md5=d5a34bea4dc4885a911500da8f7a49b2CAS | 8689681PubMed |
Ekwall, K., Javerzat, J. P., Lorentz, A., Schmidt, H., Cranston, G., and Allshire, R. (1995). The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429–1431.
| The chromodomain protein Swi6: a key component at fission yeast centromeres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFCkt7w%3D&md5=861ee77632025c23adc9897010e4e78aCAS | 7660126PubMed |
Gonzalo, S., and Blasco, M. A. (2005). Role of Rb family in the epigenetic definition of chromatin. Cell Cycle 4, 752–755.
| Role of Rb family in the epigenetic definition of chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslCqtro%3D&md5=fd71bacd23e419ddd6ab31b1c2247882CAS | 15908781PubMed |
Gonzalo, S., García-Cao, M., Fraga, M. F., Schotta, G., Antoine, H. F. M. P., Cotter, S. E., Eguía, R., Dean, D. C., Esteller, M., Jenuwein, T., and Blasco, M. A. (2005). Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7, 420–428.
| Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVakt7o%3D&md5=36b3898f18365e8cece0f4430fa535d0CAS | 15750587PubMed |
Hayashi, K., Yoshida, K., and Matsui, Y. (2005). A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438, 374–378.
| A histone H3 methyltransferase controls epigenetic events required for meiotic prophase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WksbbM&md5=46dfd831e8df17e3d67dfe9b79c24525CAS | 16292313PubMed |
Isaac, C. E., Francis, S. M., Martens, A. L., Julian, L. M., Seifried, L. A., Erdmann, N., Binne, U. K., Harrington, L., Sicinski, P., Berube, N. G., Dyson, N. J., and Dick, F. A. (2006). The retinoblastoma protein regulates pericentric heterochromatin. Mol. Cell. Biol. 26, 3659–3671.
| The retinoblastoma protein regulates pericentric heterochromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVKksbg%3D&md5=0ee393ebd78818034f60c710bf55bc12CAS | 16612004PubMed |
Julien, E., and Herr, W. (2004). A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Mol. Cell 14, 713–725.
| A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslemsbc%3D&md5=d58ea7186b1fdca15ee126fe155fadcfCAS | 15200950PubMed |
Karachentsev, D., Sarma, K., Reinberg, D., and Steward, R. (2005). PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431–435.
| PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Ohs7o%3D&md5=527c9b66ae7b2eafda41726a344dd151CAS | 15681608PubMed |
Kniewel, R., and Keeney, S. (2009). Histone methylation sets the stage for meiotic DNA breaks. EMBO 28, 81–83.
| Histone methylation sets the stage for meiotic DNA breaks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCjt7o%3D&md5=4f2878834c49d07be900202f890c45e9CAS |
Nielsen, S., Schneider, R., Bauer, U., Bannister, A., Morrison, A., Carroll, D. O., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R., and Kouzarides, T. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565.
| Rb targets histone H3 methylation and HP1 to promoters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFGrurs%3D&md5=53a8814410f9e921abb5e8e2a6af3092CAS | 11484059PubMed |
Nishioka, K., Rice, J. C., Sarma, K., Erdjument-Bromage, H., Werner, J., Wang, Y., Chuikov, S., Valenzuela, P., Tempst, P., Steward, R., Lis, J. T., Allis, C. D., and Reinberg, D. (2002). PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213.
| PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Sksbg%3D&md5=2c54ad42666cf606d6c8372a75d2e66fCAS | 12086618PubMed |
Obuse, C., Iwasaki, O., Kiyomitsu, T., Goshima, G., Toyoda, Y., and Yanagida, M. (2004). A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol. 6, 1135–1141.
| A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFentLs%3D&md5=d0f98ebc80e1d6d4c447262a21c7c485CAS | 15502821PubMed |
Oda, H., Okamoto, I., Murphy, N., Chu, J., Price, S., Shen, M., Torres-Padilla, M., Heard, E., and Reinberg, D. (2009). Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell. Biol. 29, 2278–2295.
| Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1SrsL8%3D&md5=20a77f0a86e5b163b2c536daf648d2e0CAS | 19223465PubMed |
Pannetier, M., Julien, E., Schotta, G., Tardat, M., Sardet, C., Jenuwein, T., and Feil, R. (2008). PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse. EMBO 9, 998–1005.
| PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyqu7zK&md5=601970cbde80189d2305257572970150CAS |
Peters, A. H. F. M., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M., and Jenuwein, T. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337.
| Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVKhsb4%3D&md5=612a715f3195ecaf89c3b6d850e42b55CAS |
Pluta, A. F., MacKay, A. M., Ainsztein, A. M., Goldberg, I. G., and Earnshaw, W. C. (1995). The centromere: hub of chromosomal activities. Science 270, 1591–1594.
| The centromere: hub of chromosomal activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVCis7o%3D&md5=cbdfc7652c50d163f04f737620bb9b9bCAS | 7502067PubMed |
Rice, J. C., Nishioka, K., Sarma, K., Steward, R., and Reinberg, D. (2002). Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16, 2225–2230.
| Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFOitLo%3D&md5=6d584505ca05399e3240fa2b15f6a3a3CAS | 12208845PubMed |
Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262.
| A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVyrsb0%3D&md5=f38b2b072375c60bb09050d8a1928bf5CAS | 15145825PubMed |
Schotta, G., Sengupta, R., Kubicek, S., Malin, S., Kauer, M., Callén, E., Celeste, A., Pagani, M., Opravil, S., Inti, A., De La Rosa-Velazquez Espejo, A., Bedford, M. T., Nussenzweig, A., Busslinger, M., and Jenuwein, T. (2008). A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 22, 2048–2061.
| A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslKqsb0%3D&md5=2a4fe643f135281088c632265dc1001eCAS | 18676810PubMed |
Souza, P., Völkel, P., Trinel, D., Vandamme, J., Rosnoblet, C., Héliot, L., and Angrand, P. (2009). The histone methyltransferase SUV420H2 and heterochromatin proteins HP1 interact but show different dynamic behaviours. BMC Cell Biol. 10, 41.
| The histone methyltransferase SUV420H2 and heterochromatin proteins HP1 interact but show different dynamic behaviours.Crossref | GoogleScholarGoogle Scholar | 19486527PubMed |
Tryndyak, V. P., Kovalchuk, O., and Pogribny, I. P. (2006). Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol. Ther. 5, 65–70.
| Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVSnt78%3D&md5=3705f80af07de74a140af2bf062e7dadCAS | 16322686PubMed |
Tsang, L. W. K., Hu, N. D., and Underhill, A. (2010). Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal differences in their cellular localization and effects on myogenic differentiation. PLoS One 5, e14 447.
| Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal differences in their cellular localization and effects on myogenic differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlSmsA%3D%3D&md5=c157283a577a58f60851c300d1445885CAS |
Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Borchers, C., Tempst, P., and Zhang, Y. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217.
| Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGntg%3D%3D&md5=d5489dcf5f7567d63505a93a55549a3cCAS | 11779497PubMed |
Whitten, W. K. (1971). Nutrient requirement for the culture of preimplantation embryos. Adv. Biosci. 6, 129–139.
Xiao, B., Jing, C., Kelly, G., Walker, P. A., Muskett, F. W., Frenkiel, T. A., Martin, S. R., Sarma, K., Reinberg, D., Gamblin, S. J., and Wilson, J. R. (2005). Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev. 19, 1444–1454.
| Specificity and mechanism of the histone methyltransferase Pr-Set7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslChu78%3D&md5=deeaf15428a1266bfe1b21a013ac6036CAS | 15933069PubMed |
Yang, H., Pesavento, J. J., Starnes, T. W., Cryderman, D. E., Wallrath, L. L., Kelleher, N. L., and Mizzen, C. A. (2008). Preferential dimethylation of histone h4 lysine 20 by suv4–20. J. Biol. Chem. 283, 12 085–12 092.
| Preferential dimethylation of histone h4 lysine 20 by suv4–20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVyrsLc%3D&md5=33b7546577de670d388b8159e54deae3CAS |
Yin, Y., Liu, C., Tsai, S. N., Zhou, B., Ngai, S. M., and Zhu, G. (2005). SET8 recognizes the sequence RHRK20VLRDN within the N terminus of histone H4 and mono-methylates lysine 20. J. Biol. Chem. 280, 30 025–30 031.
| SET8 recognizes the sequence RHRK20VLRDN within the N terminus of histone H4 and mono-methylates lysine 20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1Crsr0%3D&md5=0634dd594364c196c89bc83955abd2a5CAS |
Zinner, R., Albiez, H., Walter, J., Peters, A. H. F. M., Cremer, T., and Cremer, M. (2006). Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zones Histochem. Cell Biol. 125, 3–19.
| Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zonesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvF2itw%3D%3D&md5=6ee82a0c69a27e67428b71b38087b775CAS | 16215742PubMed |