Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Altered gene expression in cloned piglets

X. Cindy Tian A F , Joonghoon Park A , Richard Bruno B , Richard French C , Le Jiang A E and Randall S. Prather D
+ Author Affiliations
- Author Affiliations

A Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269, USA.

B Department of Nutritional Science, University of Connecticut, Storrs, CT 06269, USA.

C Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.

D Department of Animal Science, University of Missouri-Columbia, Columbia, MO 65211, USA.

E Present address: Institute for Cancer Genetics, Irving Comprehensive Research Center, Columbia University, New York, NY 10032, USA.

F Corresponding author. Email: xiuchun.tian@uconn.edu

Reproduction, Fertility and Development 21(1) 60-66 https://doi.org/10.1071/RD08214
Published: 9 December 2008

Abstract

Studies on cloned pigs are scant compared with those in mice and cattle. Expression profiles of cloned pig embryos on full-term cloned pigs are even more limited owing to the limited availability of DNA microarray technology in the pig. We have conducted expression profile comparisons between pigs from somatic cell nuclear transfer and pigs from conventional breeding at birth and 1 month of age. Differentially expressed genes that are subjected to DNA methylation were also examined for their DNA methylation status. These data will be presented in the 2009 Annual Meeting of the International Embryo Transfer Society in San Diego. In the present review, we focus on summarising existing findings on epigenetic and other changes in cloned embryo, cloned pigs and their offspring by conventional breeding.


References

Amarger, V. , Nguyen, M. , Van Laere, A. S. , Braunschweig, M. , Nezer, C. , Georges, M. , and Andersson, L. (2002). Comparative sequence analysis of the INS-IGF2–H19 gene cluster in pigs. Mamm. Genome 13, 388–398.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Park J. H., Davis S., Suteevun T., Bruno R., Prather R., Yang X., and Tian X. C. (2008). DNA methylation analyses in lungs of cloned pigs. In ‘Proceedings of the 2008 annual meeting of the society for the study of reproduction’. p. 73 (Abstract #57).

Polejaeva, I. A. , Chen, S. H. , Vaught, T. D. , Page, R. L. , and Mullins, J. , et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Pratt, S. L. , Sherrer, E. S. , Reeves, D. E. , and Stice, S. L. (2006). Factors influencing the commercialisation of cloning in the pork industry. Soc. Reprod. Fertil. Suppl. 62, 303–315.
PubMed |  CAS |

Ramsoondar, J. J. , Macháty, Z. , Costa, C. , Williams, B. L. , Fodor, W. L. , and Bondioli, K. R. (2003). Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol. Reprod. 69, 437–445.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reik, W. , Santos, F. , Mitsuya, K. , Morgan, H. , and Dean, W. (2003). Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1403–1409.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Routh, A. , Sandin, S. , and Rhodes, D. (2008). Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl Acad. Sci. USA 105, 8872–8877.
Crossref | GoogleScholarGoogle Scholar | CAS |

Scott, L. A. , Kuroiwa, A. , Matsuda, Y. , and Wichman, H. A. (2006). X accumulation of LINE-1 retrotransposons in Tokudaia osimensis, a spiny rat with the karyotype XO. Cytogenet. Genome Res. 112, 261–269.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Shibata, M. , Otake, M. , Tsuchiya, S. , Chikyu, M. , Horiuchi, A. , and Kawarasaki, T. (2006). Reproductive and growth performance in Jin Hua pigs cloned from somatic cell nuclei and the meat quality of their offspring. J. Reprod. Dev. 52, 583–590.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shiels, P. G. , Kind, A. J. , Campbell, K. H. , Waddington, D. , Wilmut, I. , Colman, A. , and Schnieke, A. E. (1999). Analysis of telomere lengths in cloned sheep. Nature 399, 316–317.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Takagi, N. , and Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takagi, N. , Sugawara, O. , and Sasaki, M. (1982). Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85, 275–286.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thorvaldsen, J. L. , Verona, R. I. , and Bartolomei, M. S. (2006). X-tra! X-tra! News from the mouse X chromosome. Dev. Biol. 298, 344–353.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tsai, S. , Mir, B. , Martin, A. C. , Estrada, J. L. , and Bischoff, S. R. , et al. (2006). Detection of transcriptional difference of porcine imprinted genes using different microarray platforms. BMC Genomics 7, 328.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tycko, B. , and Morison, I. M. (2002). Physiological functions of imprinted genes. J. Cell. Physiol. 192, 245–258.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wagschal, A. , and Feil, R. (2006). Genomic imprinting in the placenta. Cytogenet. Genome Res. 113, 90–98.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Walker, S. C. , Shin, T. , Zaunbrecher, G. M. , Romano, J. E. , Johnson, G. A. , Bazer, F. W. , and Piedrahita, J. A. (2002). A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes. Cloning Stem Cells 4, 105–112.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Walker, S. C. , Christenson, R. K. , Ruiz, R. P. , Reeves, D. E. , Pratt, S. L. , Arenivas, F. , Williams, N. E. , Bruner, B. L. , and Polejaeva, I. A. (2007). Comparison of meat composition from offspring of cloned and conventionally produced boars. Theriogenology 67, 178–184.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wilkins, J. F. , and Haig, D. (2003). What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4, 359–368.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Williams, N. E. , Walker, S. C. , Reeves, D. E. , Sherrer, E. , and Galvin, J. M. , et al. (2006). A comparison of reproductive characteristics of boars generated by somatic cell nuclear transfer to highly related conventionally produced boars. Cloning Stem Cells 8, 130–139.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Xu, C. , Su, L. , Zhou, Q. , Li, C. , and Zhao, S. (2007). Imprinting analysis of the porcine MEST gene in 75 and 90 day placentas and prenatal tissues. Acta Biochim. Biophys. Sin. 39, 633–639.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhang, F. W. , Cheng, H. C. , Jiang, C. D. , Deng, C. Y. , Xiong, Y. Z. , Li, F. E. , and Lei, M. G. (2007a). Imprinted status of pleomorphic adenoma gene-like I and paternal expression gene 10 genes in pigs. J. Anim. Sci. 85, 886–890.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhang, Y. , Li, J. , Villemoes, K. , Pedersen, A. M. , Purup, S. , and Vajta, G. (2007b). An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 9, 357–363.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhou, Q. Y. , Huang, J. N. , Xiong, Y. Z. , and Zhao, S. H. (2007). Imprinting analyses of the porcine GATM and PEG10 genes in placentas on Days 75 and 90 of gestation. Genes Genet. Syst. 82, 265–269.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |