Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cryopreservation of manipulated embryos: tackling the double jeopardy

A. Dinnyes A B E and T. L. Nedambale C D
+ Author Affiliations
- Author Affiliations

A Biotalentum Ltd, Aulich L. 26, Godollo, 2100, Hungary.

B Molecular Animal Biotechnology Laboratory, Szent Istvan University, Pater K. u. 1, 2100, Godollo, Hungary.

C Agricultural Research Council, Animal Production Institute, Germplasm Conservation and Reproduction Biotechnologies, Private Bag X2, Irene 0062, South Africa.

D University of Connecticut, Center for Regenerative Biology, Storrs, CT 06269, USA.

E Corresponding author. Email: biotalentum@yahoo.com

Reproduction, Fertility and Development 21(1) 45-59 https://doi.org/10.1071/RD08220
Published: 9 December 2008

Abstract

The aim of the present review is to provide information to researchers and practitioners concerning the reasons for the altered viability and the medium- and long-term consequences of cryopreservation of manipulated mammalian embryos. Embryo manipulation is defined herein as the act or process of manipulating mammalian embryos, including superovulation, AI, IVM, IVF, in vitro culture, intracytoplasmic sperm injection, embryo biopsy or splitting, somatic cell nuclear transfer cloning, the production of sexed embryos (by sperm sexing), embryo cryopreservation, embryo transfer or the creation of genetically modified (transgenic) embryos. With advances in manipulation technologies, the application of embryo manipulation will become more frequent; the proper prevention and management of the resulting alterations will be crucial in establishing an economically viable animal breeding technology.


Acknowledgements

The authors’ work reported herein was supported by the European Union FP6 (MEDRAT-LSHG-CT-2005–518240 and MRTN-CT-2006–035468), COST Action FA0702; by the Hungarian Government (NKTH/KPI Kozma Ferenc TUDAS-1–2006–0005 project) and a Hungarian–South African Bilateral Scientific and Technological (TET No. OMFB-00302/2008) collaborative project.


References

Abe, H. , Matsuzaki, S. , and Hoshi, H. (2002). Ultrastructural differences in bovine morulae classified as high and low qualities by morphological evaluation. Theriogenology 57, 1273–1283.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Critser J. K., Agca Y., and Woods E. J. (2002). Cryopreservation of mature and immature gametes. In ‘Assisted Reproductive Technology’. (Eds C. J. DeJonge and C. L. R. Barratt.) pp. 144–166. (Cambridge University Press: Cambridge.)

Dean, W. , Bowden, L. , Aitchison, A. , Klose, J. , Moore, T. , Meneses, J. J. , Reik, W. , and Feil, R. (1998). Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125, 2273–2282.
PubMed |  CAS | Karlsson J. O. M., and Toner M. (2000). Cryopreservation. In ‘Principles of Tissue Engineering’. 2nd edn. (Eds R. P. Lanza, R. Langer and J. P. Vacanti.) pp. 293–307. (Academic Press: San Diego.)

Karlsson, J. O. , Cravalho, E. G. , and Toner, M. (1994). A model of diffusion-limited ice growth inside biological cells during freezing. J. Appl. Physiol. 75, 4442–4450.
Crossref | GoogleScholarGoogle Scholar | Meng Q., Wang M., Stanca C. A., Bodo S., and Dinnyes A. (2008). Cotransfer of parthenogenetic embryos improves the pregnancy and implantation of nuclear transfer embryos in mouse. Cloning Stem Cells, in press.

Mitalipov, S. M. , Yeoman, R. R. , Kuo, H. C. , and Wolf, D. P. (2002). Monozygotic twinning in rhesus monkeys by manipulation of in-vitro derived embryos. Biol. Reprod. 66, 1449–1455.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Pereira R. M., and Marques C. C. (2008). Animal oocyte and embryo cryopreservation. Cell Tissue Bank, in press.

Phelps, C. J. , Koike, C. , Vaught, T. D. , Boone, J. , and Wells, K. D. , et al. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Smith S. L., Everts R. E., Sung L. Y., Du F., Page R. L., et al. (2008). Gene expression profiling of single bovine embryos uncovers significant effects of in vitro maturation, fertilization and culture. Mol. Reprod. Dev., in press.

Somfai T., Ozawa M., Noguchi J., Kaneko H., Nakai M., Maedomari N., Ito J., Kashiwazaki N., Nagai T., and Kikuchi K. (2008). Live piglets derived from in vitro-produced zygotes vitrified at the pronuclear stage. Biol Reprod., in press.

Steptoe, P. C. , Edwards, R. G. , and Purdy, J. M. (1980). Clinical aspects of pregnancies established with cleaving embryos grown in vitro. Br. J. Obstet. Gynaecol. 87, 757–768.
PubMed |  CAS | Van Soom A., and Boer M. (2002). ‘Assement of Mammalian Embryo Quality: Invasive and Non-invasive Techniques,’ 1st edn. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Van Soom A., and de Kruif A. (1992). A comparative study of in vivo and in vitro derived bovine embryos. 12th Int. Congress Anim. Reprod. Artif. Insemination 3, 1363–1365.

Van Soom, A. , Boerjan, M. L. , Bols, P. E. , Vanroose, G. , Lein, A. , Coryn, M. , and de Kruif, A. (1997). Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol. Reprod. 57, 1041–1049.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Van Soom, A. , Mahmoudzadeh, A. R. , Christophe, A. , Ysebaert, M. T. , and de Kruif, A. (2001). Silicone oil used in microdrop culture can affect bovine embryonic development and freezability. Reprod. Domest. Anim. 36, 169–176.
PubMed |  CAS |

Van Steirteghem, A. C. , Van der Elst, J. , Van den Abbeel, E. , Joris, H. , Camus, M. , and Devroey, P. (1994). Cryopreservation of supernumerary multicellular human embryos obtained after intracytoplasmic sperm injection. Fertil. Steril. 62, 775–780.
PubMed |  CAS |

Verpoest, W. , Fauser, B. C. , Papanikolaou, E. , Staessen, C. , Van Landuyt, L. , Donoso, P. , Tournaye, H. , Liebaers, I. , and Devroey, P. (2008). Chromosomal aneuploidy in embryos conceived with unstimulated cycle IVF. Hum. Reprod. 23, 2369–2371.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Viuff, D. , Rickords, L. , Offenberg, H. , Hyttel, P. , Avery, B. , Greve, T. , Olsaker, I. , Williams, J. L. , Callesen, H. , and Thomsen, P. D. (1999). A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol. Reprod. 60, 1273–1278.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Viuff, D. , Palsgaard, A. , Rickords, L. , Lawson, L. G. , Greve, T. , Schmidt, M. , Avery, B. , Hyttel, P. , and Thomsen, P. D. (2002). Bovine embryos contain a higher proportion of polyploid cells in the trophectoderm than in the embryonic disc. Mol. Reprod. Dev. 62, 483–488.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wakayama, T. , and Yanagimachi, R. (1999). Cloning of male mice from adult tail-tip cells. Nat. Genet. 22, 127–128.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wakayama, T. , Perry, A. C. , Zuccotti, M. , Johnson, K. R. , and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Walker, S. K. , Hartwich, K. M. , and Robinson, J. S. (2000). Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Hum. Reprod. Update 6, 564–577.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, Q. , and Latham, K. E. (2000). Translation of maternal messenger ribonucleic acids encoding transcription factors during genome activation in early mouse embryos. Biol. Reprod. 62, 969–978.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, S. , Cowan, C. A. , Chipperfield, H. , and Powers, R. D. (2005). Gene expression in the preimplantation embryo: in-vitro developmental changes. Reprod. Biomed. Online 10, 607–616.
PubMed |  CAS |

Wang, Z. Q. , Fung, M. R. , Barlow, D. P. , and Wagner, E. F. (1994). Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372, 464–467.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Watkins, A. J. , Platt, D. , Papenbrock, T. , Wilkins, A. , Eckert, J. J. , Kwong, W. Y. , Osmond, C. , Hanson, M. , and Fleming, T. P. (2007). Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc. Natl Acad. Sci. USA 104, 5449–5454.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Willadsen, S. M. (1979). A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 277, 298–300.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Williams, T. J. (1984). Applications of microsurgery to reproduction in domestic and exotic mammals. Zoo Biol. 3, 379–382.
Crossref | GoogleScholarGoogle Scholar |

Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Herrmann, D. , and Niemann, H. (2003). Timing of blastocyst expansion affects spatial messenger RNA expression patterns of genes in bovine blastocysts produced in vitro. Biol. Reprod. 68, 2073–2080.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wright, R. W. , and Ellington, J. (1995). Morphological and physiological differences between in vivo- and in vitro-produced preimplantation embryos from livestock species. Theriogenology 44, 1167–1189.
Crossref | GoogleScholarGoogle Scholar |

Xu, J. , Guo, Z. , Su, L. , Nedambale, T. L. , and Zhang, J. , et al. (2006). Developmental potential of vitrified holstein cattle embryos fertilized in vitro with sex-sorted sperm. J. Dairy Sci. 89, 2510–2518.
PubMed |  CAS |

Yanagimachi, R. (2002). Cloning: experience from the mouse and other animals. Mol. Cell. Endocrinol. 187, 241–248.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, X. , Kubota, C. , Suzuki, H. , Taneja, M. , Bols, P. E. , and Presicce, G. A. (1998). Control of oocyte maturation in cows: biological factors. Theriogenology 49, 471–482.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Young, L. E. , Fernandes, K. , McEvoy, T. G. , Butterwith, S. C. , Gutierrez, C. G. , Carolan, C. , Broadbent, P. J. , Robinson, J. J. , Wilmut, I. , and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhou, Q. , Renard, J. P. , Le Friec, G. , Brochard, V. , Beaujean, N. , Cherifi, Y. , Fraichard, A. , and Cozzi, J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179–1179.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |