Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Spatial epidemiology of Toxoplasma gondii seroprevalence in sentinel feral chickens (Gallus gallus) in Kaua‘i, Hawai‘i

Kayleigh Chalkowski https://orcid.org/0000-0002-0136-4557 A D , Kathryn Fiedler B , William G. Lucey C , Sarah Zohdy https://orcid.org/0000-0001-5316-0567 A and Christopher A. Lepczyk https://orcid.org/0000-0002-5316-3159 A
+ Author Affiliations
- Author Affiliations

A School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA.

B College of Tropical Agriculture and Human Resources, Cooperative Extension, University of Hawai‘i, Līhu‘e, Hawai‘i, USA.

C Kaua‘i Invasive Species Committee, Kapa‘a, Hawai‘i, USA.

D Corresponding author. Email: kzc0061@auburn.edu

Pacific Conservation Biology 27(2) 170-176 https://doi.org/10.1071/PC20045
Submitted: 9 May 2020  Accepted: 9 September 2020   Published: 5 October 2020

Abstract

Toxoplasma gondii is a globally prevalent coccidian parasite that fatally infects a wide range of endangered avian and mammalian hosts in Hawai‘i including the Hawaiian Monk Seal (llio holo I ka uaua; Monachus schauinslandi), Hawaiian Goose (Nēnē; Branta sandvicensis) and Hawaiian Crow (‘Alalā; Corvus hawaiiensis). Thus, identifying environmental factors that predict or impact T. gondii exposure is important for mitigating disease risks. The island of Kaua‘i is a good model system to study spatial and environmental covariates of T. gondii prevalence due to (1) high landscape heterogeneity spanning a small geographical area, (2) the presence of an ideal sentinel species, the feral chicken (Gallus gallus), and (3) recent evidence that T. gondii contributes to local declines of Hawai‘i’s endemic bird and mammal species. Despite these compelling opportunities, little is known about the prevalence or distribution of T. gondii in Hawai‘i. In this study, 294 Kaua‘i feral chickens were tested for T. gondii using ELISA IgG immunoassays, of which 117 chickens (39.8%) tested seropositive – indicating infection with the parasite – and nearly every sampled site contained chickens with positive seroprevalence. Prevalence varied among the 34 sampled localities and was significantly, positively correlated with proximity to the coast. These findings reveal that T. gondii is prevalent across Kaua‘i. Furthermore, this variability offers insight to the factors that might predict T. gondii seropositivity across the landscape, and likewise predict exposure risks for endangered wildlife.

Keywords: archipelago, endangered wildlife species, endemic birds, environmental covariates, feral chicken, Hawai‘i, Hawaiian Crow, Hawaiian Goose, Hawaiian Monk Seal, island, landscape, marine mammals, oocysts, parasite, seroprevalence, spatial covariates, Toxoplasma gondii.


References

Afonso, E., Thulliez, P., and Gilot-Fromont, E. (2010). Local meteorological conditions, dynamics of seroconversion to Toxoplasma gondii in cats (Felis catus) and oocyst burden in a rural environment. Epidemiology & Infection 138, 1105–1113.

Barbieri, M., Kashinsky, L., Rotstein, D., Colegrove, K., Haman, K., Magargal, S., Sweeny, A., Kaufman, A., Grigg, M., and Littnan, C. (2016). Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi. Diseases of Aquatic Organisms 121, 85–95.
Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi.Crossref | GoogleScholarGoogle Scholar | 27667806PubMed |

Bowater, R. O., Norton, J., Johnson, S., Hill, B., O’Donoghue, P., and Prior, H. (2003). Toxoplasmosis in Indo-Pacific humpbacked dolphins (Sousa chinensis), from Queensland. Australian Veterinary Journal 81, 627–632.
Toxoplasmosis in Indo-Pacific humpbacked dolphins (Sousa chinensis), from Queensland.Crossref | GoogleScholarGoogle Scholar | 15080475PubMed |

Boyer, K., Hill, D., Mui, E., Wroblewski, K., Karrison, T., Dubey, J. P., Sautter, M., Noble, A. G., Withers, S., Swisher, C., Heydemann, P., Hosten, T., Babiarz, J., Lee, D., Meier, P., McLeod, R., and Toxoplasmosis Study Group, (2011). Unrecognized ingestion of Toxoplasma gondii oocysts leads to congenital toxoplasmosis and causes epidemics in North America. Clinical Infectious Diseases 53, 1081–1089.
Unrecognized ingestion of Toxoplasma gondii oocysts leads to congenital toxoplasmosis and causes epidemics in North America.Crossref | GoogleScholarGoogle Scholar | 22021924PubMed |

Bröstom, G. (2019). glmmML: generalized linear models with clustering. R package version 1.1.0. Available at https://CRAN.R-project.org/package=glmmML

Dabritz, H. A., Atwill, E. R., Gardner, I. A., Miller, M. A., and Conrad, P. A. (2006). Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution. Journal of the American Veterinary Medical Association 229, 74–81.
Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution.Crossref | GoogleScholarGoogle Scholar | 16817717PubMed |

Darnault, C. J. G., Peng, Z., Yu, C., Li, B., Jacobson, A. R., and Baveye, P. C. (2017). Movement of Cryptosporidium parvum oocysts through soils without preferential pathways: exploratory test. Frontiers in Environmental Science 5, 39.
Movement of Cryptosporidium parvum oocysts through soils without preferential pathways: exploratory test.Crossref | GoogleScholarGoogle Scholar |

Davies, C. M., Ferguson, C. M., Kaucner, C., Krogh, M., Altavilla, N., Deere, D. A., and Ashbolt, N. J. (2004). Dispersion and transport of Cryptosporidium oocysts from fecal pats under simulated rainfall events. Applied and Environmental Microbiology 70, 1151–1159.
Dispersion and transport of Cryptosporidium oocysts from fecal pats under simulated rainfall events.Crossref | GoogleScholarGoogle Scholar | 14766600PubMed |

Davis, A. A., Lepczyk, C. A., Haman, K., Morden, C. W., Crow, S. E., Jensen, N., and Lohr, M. T. (2018). Toxoplasma gondii detection in in fecal samples from cats (Felis catus) in Hawai‘i. Pacific Science 72, 501–511.
Toxoplasma gondii detection in in fecal samples from cats (Felis catus) in Hawai‘i.Crossref | GoogleScholarGoogle Scholar |

Dubey, J. P. (1998). Toxoplasma gondii oocyst survival under defined temperatures. Journal of Parasitology 84, 862–865.
Toxoplasma gondii oocyst survival under defined temperatures.Crossref | GoogleScholarGoogle Scholar | 9714227PubMed |

Dubey, J. P. (2010). Toxoplasma gondii infections in chickens (Gallus domesticus): prevalence, clinical disease, diagnosis and public health significance. Zoonoses and Public Health 57, 60–73.
Toxoplasma gondii infections in chickens (Gallus domesticus): prevalence, clinical disease, diagnosis and public health significance.Crossref | GoogleScholarGoogle Scholar | 19744305PubMed |

Dubey J. P. (2014) The history and life-cycle of Toxoplasma gondii. In ‘Toxoplasma gondii the model apicomplexan: perspective and methods’, (2nd edn) (Eds L. M. Weiss, K. Kim) pp. 1–17. (Academic Press: San Diego.)

Dubey, J. P., Zarnke, R., Thomas, N. J., Wong, S. K., Bonn, W. V., Briggs, M., Davis, J. W., Ewing, R., Mense, M., Kwok, O. C. H., Romand, S., and Thulliez, P. (2003). Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Veterinary Parasitology 116, 275–296.
Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals.Crossref | GoogleScholarGoogle Scholar | 14580799PubMed |

Dumètre, A., and Dardé, M. (2006). How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews 27, 651–661.
How to detect Toxoplasma gondii oocysts in environmental samples?Crossref | GoogleScholarGoogle Scholar |

ESRI (2016). ArcGIS desktop: release 10.4.1. (Environmental Systems Research Institute: Redlands, CA.)

Field, M. E., Berg, C. J., and Cochran, S. A. (2007). Science and management in the Hanalei watershed: a trans-disciplinary approach. United States Geological Service. Report no. 2007–1219, Open-file report. (Reston, VA.)

Giambelluca, T. W., Chen, Q., Frazier, A. G., Price, J. P., Chen, Y. L., Chu, P. S., Eischeid, J. K., and Delparte, D. M. (2013). Online rainfall atlas of Hawai‘i. Bulletin of the American Meteorological Society 94, 313–316.
Online rainfall atlas of Hawai‘i.Crossref | GoogleScholarGoogle Scholar |

Gibson, A. K., Raverty, S., Lambourn, D. M., Huggins, J., Magargal, S. L., and Grigg, M. E. (2011). Polyparasitism is associated with increased disease severity in Toxoplasma gondii-infected marine sentinel species. PLoS Neglected Tropical Diseases 5, e1142.
Polyparasitism is associated with increased disease severity in Toxoplasma gondii-infected marine sentinel species.Crossref | GoogleScholarGoogle Scholar | 21629726PubMed |

Honnold, S. P., Braun, R., Scott, D. P., Sreekumar, C., and Dubey, J. P. (2005). Toxoplasmosis in a Hawaiian monk seal (Monachus schauinslandi). Journal of Parasitology 91, 695–697.
Toxoplasmosis in a Hawaiian monk seal (Monachus schauinslandi).Crossref | GoogleScholarGoogle Scholar | 16108571PubMed |

Hurvich, C. M., and Tsai, C.-L. (1993). A corrected Akaike information criterion for vector autoregressive model selection. Journal of Time Series Analysis 14, 271–279.
A corrected Akaike information criterion for vector autoregressive model selection.Crossref | GoogleScholarGoogle Scholar |

Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods 26, 1481–1496.
A spatial scan statistic.Crossref | GoogleScholarGoogle Scholar |

Kulldorff, M., and Information Management Services, Inc. (2009). SaTScan TM v7.0: software for the spatial and spacetime scan statistics.

Lélu, M., Villena, I., Dardé, M. L., Aubert, D., Geers, R., Dupuis, E., Marnef, F., Poulle, M. L., Gotteland, C., Dumètre, A., and Gilot-Fromont, E. (2012). Quantitative estimation of the viability of Toxoplasma gondii oocysts in soil. Applied Environmental Microbiology 78, 5127–5132.
Quantitative estimation of the viability of Toxoplasma gondii oocysts in soil.Crossref | GoogleScholarGoogle Scholar | 22582074PubMed |

Lepczyk, C. A., Haman, K. H., Sizemore, G. C., and Farmer, C. (2020). Quantifying the disease risk of feral cat colonies in relation to bird conservation areas on O‘ahu, . Conservation Science and Practice 2, e179.

Montoya, J. G. (2002). Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. The Journal of Infectious Diseases 185, S73–82.
Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis.Crossref | GoogleScholarGoogle Scholar | 11865443PubMed |

Mose, J. M., Kagira, J. M., Karanja, S. M., Ngotho, M., Kamau, D. M., Njuguna, A. N., and Maina, N. W. (2016). Detection of natural Toxoplasma gondii infection in chicken in Thika region of Kenya using nested polymerase chain reaction. Biomed Research International 2016, 7589278.
Detection of natural Toxoplasma gondii infection in chicken in Thika region of Kenya using nested polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 27981052PubMed |

MyBioSource (2020). T-IgG elisa kit: chicken toxoplasma antibody IgG (T-IgG) ELISA kit. Available at https://www.mybiosource.com/chicken-elisa-kits/toxoplasma-antibody-igg-t-igg/9364379 (Accessed 7 May 2020).

R Core Team (2019). ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Saichua, P., Jumnainsong, A., Tantrawatpan, C., Kiatsopit, N., Kopolrat, K., Suwannatrai, A., and Sithithaworn, P. (2017). Seroprevalence of Toxoplasma gondii in free range chickens (Gallus domesticus) in Khon Kaen province, Thailand. Tropical Biomedicine 34, 419–424.

State of Hawaii Office of Planning (2020). Download GIS data. Available at http://planning.hawaii.gov/gis/download-gis-data/ [accessed 19 April 2018].

Torgerson, P. R., and Mastroiacovo, P. (2013). The global burden of congenital toxoplasmosis: a systematic review. Bulletin of the World Health Organization 91, 501–508.
The global burden of congenital toxoplasmosis: a systematic review.Crossref | GoogleScholarGoogle Scholar | 23825877PubMed |

Trask, J. R., Kalita, P. K., Kuhlenschmidt, M. S., Smith, R. D., and Funk, T. L. (2004). Overland and near-surface transport of Cryptosporidium parvum from vegetated and nonvegetated surfaces. Journal of Environmental Quality 33, 984–993.
Overland and near-surface transport of Cryptosporidium parvum from vegetated and nonvegetated surfaces.Crossref | GoogleScholarGoogle Scholar | 15224935PubMed |

Vaida, F., and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370.
Conditional Akaike information for mixed-effects models.Crossref | GoogleScholarGoogle Scholar |

VanWormer, E., Carpenter, T. E., Singh, P., Shapiro, K., Wallender, W. W., Conrad, P. A., Largier, J. L., Maneta, M. P., and Mazet, J. A. K. (2016). Coastal development and precipitation drive pathogen flow from land to sea: evidence from a Toxoplasma gondii and felid host system. Scientific Reports 6, 1–9.
Coastal development and precipitation drive pathogen flow from land to sea: evidence from a Toxoplasma gondii and felid host system.Crossref | GoogleScholarGoogle Scholar |

Wang, Z. D., Liu, H. H., Ma, Z. X., Ma, H. Y., Li, Z. Y., Yang, Z. B., Zhu, X. Q., Xu, B., Wei, F., and Liu, Q. (2017). Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. Frontiers in Microbiology 8, 389.
Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 28337191PubMed |

Wilson, M. (2005). A portable duck trap. Afring News 34, 5–7.

Work, T. M., Massey, J. G., Rideout, B. A., Gardiner, C. H., Ledig, D. B., Kwok, O. C. H., and Dubey, J. P. (2000). Fatal toxoplasmosis in free-ranging ‘Alala from Hawaii. Journal of Wildlife Diseases 36, 205–212.
Fatal toxoplasmosis in free-ranging ‘Alala from Hawaii.Crossref | GoogleScholarGoogle Scholar | 10813600PubMed |

Work, T. M., Verma, S. K., Su, C., Medeiros, J., Kaiakapu, T., Kwok, O. C., and Dubey, J. P. (2016). Toxoplasma gondii antibody prevalence and two new genotypes of the parasite in endangered Hawaiian Geese (Nene: Branta sandvicensis). Journal of Wildlife Diseases 52, 253–257.
Toxoplasma gondii antibody prevalence and two new genotypes of the parasite in endangered Hawaiian Geese (Nene: Branta sandvicensis).Crossref | GoogleScholarGoogle Scholar | 26967138PubMed |