Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia

DM Alongi

Australian Journal of Marine and Freshwater Research 37(5) 609 - 619
Published: 1986

Abstract

Population structure and trophic composition of free-living nematodes from carbonate sands within different functional zones (reef crest, reef flat and lagoon) of Davies Reef in the Great Barrier Reef were examined. At the reef crest (station C) and at a shallow lagoon area unprotected by the back wall of the reef flat (station G), sediments were subjected to intense wave action and supported significantly (P < 0.05) lower mean nematode densities (<60 individuals per 10 cm2) than sands within the other reef zones (100-400 individuals per 10 cm2). Mean nematode densities and numerical species richness were highest (P < 0.05) in a shallow lagoon habitat protected from hydrodynamic- induced disturbances by the back wall of the reef flat (station H). Differences in population densities among the reef zones were not related to water depth or sediment granulometry. Species diversity was low within the reef, with only six species present in deep lagoon sands co-inhabited by actively bioturbating ghost shrimps (Callianassa spp.).

Normal classification, nodal analysis and detrended correspondence analysis indicated that faunal groups were distinct among the different reefal zones. Very coarse to medium sands at the reef crest and across the reef flat were inhabited primarily by omnivorous and epistrate-feeding nematodes. Most nematodes within the very fine to fine sands of the lagoon were non-selective or selective deposit feeders.

Nematode community structure from the reef crest to the shallow lagoon appears to be determined primarily by sediment granulometry as controlled by reef hydrodynamics, whereas in the deep lagoon nematode communities are negatively affected by the presence of thalassinid ghost shrimps.

https://doi.org/10.1071/MF9860609

© CSIRO 1986

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions