Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Microbial co-occurrence networks as a biomonitoring tool for aquatic environments: a review

Annachiara Codello https://orcid.org/0000-0002-1772-9936 A B * , Grant C. Hose https://orcid.org/0000-0003-2106-5543 A and Anthony Chariton https://orcid.org/0000-0002-5809-3372 A
+ Author Affiliations
- Author Affiliations

A The Environmental (e)DNA and Biomonitoring Lab, School of Natural Sciences, Wallumattagal (North Ryde) Campus, Macquarie University, Darug Nation, NSW 2113, Australia.

B Corresponding author. Email: annachiara.codello@gmail.com


Marine and Freshwater Research - https://doi.org/10.1071/MF22045
Submitted: 16 February 2022  Accepted: 25 February 2022   Published online: 16 November 2022

Journal Compilation © CSIRO 2022 Open Access CC BY-NC-ND

Abstract

Aquatic microbial ecosystems are increasingly under threat from human activities, highlighting the need to for the development and application of biomonitoring tools that can identify anthropogenically induced stress across a wide range of environments. To date, microbial biomonitoring has generally focussed on community composition and univariate endpoints, which do not provide discrete information about how species both interact with each other and as a collective. To address this, co-occurrence networks are being increasingly used to complement traditional community metrics. Co-occurrence network analysis is a quantitative analytical tool that examines the interactions between nodes (e.g. taxa) and their strengths. This information can be integrated and visualised as a network, whose characteristics and topological structures can be quantified. To date, co-occurrence network analysis has rarely been applied to aquatic systems. Here we explore the potential of co-occurrence networks as a biomonitoring tool in aquatic environments, demonstrating its capacity to provide a more comprehensive view of how microbial, notably bacterial, communities may be altered by human activities. We examine the key attributes of networks and providence evidence of how these may change as a response to disturbances while also highlighting some of the challenges associated with making the approach routine.


References

Allison, S. D., and Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America 105, 11512–11519.

Aylagas, E., Borja, Á., Irigoien, X., and Rodríguez-Ezpeleta, N. (2016). Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Frontiers in Marine Science 3, 96.
Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment.Crossref | GoogleScholarGoogle Scholar |

Azam, F., and Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology 5, 782–791.
Microbial structuring of marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon, J. I. (2005). Host–bacterial mutualism in the human intestine. Science 307, 1915–1920.
Host–bacterial mutualism in the human intestine.Crossref | GoogleScholarGoogle Scholar |

Banerjee, S., Schlaeppi, K., and Van Der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews 16, 567–576.

Barabasi, A. L., and Bonabeau, E. (2003). Scale-free network. Scientific American 288, 60–69.

Barnes, M. L., Lynham, J., Kalberg, K., and Leung, P. (2016). Social networks and environmental outcomes. Proceedings of the National Academy of Sciences of the United States of America 113, 6466–6471.
Social networks and environmental outcomes.Crossref | GoogleScholarGoogle Scholar |

Barroso‐Bergada, D., Pauvert, C., Vallance, J., Delière, L., Bohan, D. A., Buée, M., and Vacher, C. (2020). Microbial networks inferred from environmental DNA data for biomonitoring ecosystem change: strengths and pitfalls. Molecular Ecology Resources 21, 762–780.
Microbial networks inferred from environmental DNA data for biomonitoring ecosystem change: strengths and pitfalls.Crossref | GoogleScholarGoogle Scholar |

Barton, L. L., and Northup, D. E. (Eds) (2011). ‘Microbial Ecology.’ (Wiley.)
| Crossref |

Bell, T. H., and Bell, T. (2021). Many roads to bacterial generalism. FEMS Microbiology Ecology 97, fiaa240.
Many roads to bacterial generalism.Crossref | GoogleScholarGoogle Scholar |

Berry, D., and Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219.
Deciphering microbial interactions and detecting keystone species with co-occurrence networks.Crossref | GoogleScholarGoogle Scholar |

Bianconi, G., and Barabási, A. L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters 54, 436–442.

Bissett, A., Brown, M. V., Siciliano, S. D., and Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters 16, 128–139.
Microbial community responses to anthropogenically induced environmental change: towards a systems approach.Crossref | GoogleScholarGoogle Scholar |

Blanchet, F. G., Cazelles, K., and Gravel, D. (2020). Co-occurrence is not evidence of ecological interactions. Ecology Letters 23, 1050–1063.
Co-occurrence is not evidence of ecological interactions.Crossref | GoogleScholarGoogle Scholar |

Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.
A marine microbial consortium apparently mediating anaerobic oxidation of methane.Crossref | GoogleScholarGoogle Scholar |

Bohan, D. A., Vacher, C., Tamaddoni-Nezhad, A., Raybould, A., Dumbrell, A. J., and Woodward, G. (2017). Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. Trends in Ecology and Evolution 32, 477–487.
Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks.Crossref | GoogleScholarGoogle Scholar |

Bowen, J. L., Byrnes, J. E. K., Weisman, D., and Colaneri, C. (2013). Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments. Frontiers in Microbiology 4, 342.
Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments.Crossref | GoogleScholarGoogle Scholar |

Bronstein, J. L. (2009). The evolution of facilitation and mutualism. Journal of Ecology 97, 1160–1170.
The evolution of facilitation and mutualism.Crossref | GoogleScholarGoogle Scholar |

Chaffron, S., Rehrauer, H., Pernthaler, J., and Von Mering, C. (2010). A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research 20, 947–959.
A global network of coexisting microbes from environmental and whole-genome sequence data.Crossref | GoogleScholarGoogle Scholar |

Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., and Caldarelli, G. (2019). The statistical physics of real-world networks. Nature Reviews Physics 1, 58–71.
The statistical physics of real-world networks.Crossref | GoogleScholarGoogle Scholar |

Codello, A. (2021). Microbial approaches for monitoring the ecological condition of aquatic environments. PhD thesis, Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.

Comte, J., Lovejoy, C., Crevecoeur, S., and Vincent, W. F. (2016). Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences 13, 175–190.
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes.Crossref | GoogleScholarGoogle Scholar |

Cordier, T., Alonso-Sáez, L., Apothéloz-Perret-Gentil, L., Aylagas, E., Bohan, D. A., Bouchez, A., Chariton, A., Creer, S., Frühe, L., Keck, F., Keeley, N., Laroche, O., Leese, F., Pochon, X., Stoeck, T., Pawlowski, J., and Lanzén, A. (2020). Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Molecular Ecology 30, 2937–2958.
Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap.Crossref | GoogleScholarGoogle Scholar |

Costello, M. J., Coll, M., Danovaro, R., Halpin, P., Ojaveer, H., and Miloslavich, P. (2010). A census of marine biodiversity knowledge, resources, and future challenges. PLoS One 5, e12110.
A census of marine biodiversity knowledge, resources, and future challenges.Crossref | GoogleScholarGoogle Scholar |

Cristescu, M. E., and Hebert, P. D. N. (2018). Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics 49, 209–230.
Uses and misuses of environmental DNA in biodiversity science and conservation.Crossref | GoogleScholarGoogle Scholar |

Crump, B. C., and Hobbie, J. E. (2005). Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnology and Oceanography 50, 1718–1729.
Synchrony and seasonality in bacterioplankton communities of two temperate rivers.Crossref | GoogleScholarGoogle Scholar |

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems 1695, 1–9.

Delmas, E., Besson, M., Brice, M.-H. H., Burkle, L. A., Dalla Riva, G. V., Fortin, M.-J. J., Gravel, D., Guimarães, P. R., Hembry, D. H., Newman, E. A., Olesen, J. M., Pires, M. M., Yeakel, J. D., and Poisot, T. (2019). Analysing ecological networks of species interactions. Biological Reviews 94, 16–36.
Analysing ecological networks of species interactions.Crossref | GoogleScholarGoogle Scholar |

Deng, Y., Jiang, Y. H., Yang, Y., He, Z., Luo, F., and Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics 13, 113.
Molecular ecological network analyses.Crossref | GoogleScholarGoogle Scholar |

Derocles, S. A. P., Bohan, D. A., Dumbrell, A. J., Kitson, J. J. N., Massol, F., Pauvert, C., Plantegenest, M., Vacher, C., and Evans, D. M. (2018). Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Advances in Ecological Research 58, 1–62.
Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis.Crossref | GoogleScholarGoogle Scholar |

Diamond, J. M. (1975). Assembly of species communities. In ‘Ecology and Evolution of Communities’. pp. 342–444. (Harvard University Press.)

Di Battista, J. D., Reimer, J. D., Stat, M., Masucci, G. D., Biondi, P., De Brauwer, M., Wilkinson, S. P., Chariton, A. A., and Bunce, M. (2020). Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Scientific Reports 10, 8365.
Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Estrada, E. (2007). Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. Journal of the Theoretical Biology 244, 296–307.
Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution.Crossref | GoogleScholarGoogle Scholar |

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology 10, 538–550.
Microbial interactions: from networks to models.Crossref | GoogleScholarGoogle Scholar |

Faust, K., and Shorter, J. M. (1981). Comparing networks across space and time, size and species. Mind 90, 61–78.
Comparing networks across space and time, size and species.Crossref | GoogleScholarGoogle Scholar |

Faust, K., Lima-Mendez, G., Lerat, J. S., Sathirapongsasuti, J. F., Knight, R., Huttenhower, C., Lenaerts, T., and Raes, J. (2015). Cross-biome comparison of microbial association networks. Frontiers in Microbiology 6, 1200.
Cross-biome comparison of microbial association networks.Crossref | GoogleScholarGoogle Scholar |

Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A., and Navarrete, S. A. (2018). Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690–699.
Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities?Crossref | GoogleScholarGoogle Scholar |

Friedman, W. R., Halpern, B. S., McLeod, E., Beck, M. W., Duarte, C. M., Kappel, C. V., Levine, A., Sluka, R. D., Adler, S., O’Hara, C. C., Sterling, E. J., Tapia-Lewin, S., Losada, I. J., McClanahan, T. R., Pendleton, L., Spring, M., Toomey, J. P., Weiss, K. R., Possingham, H. P., and Montambault, J. R. (2020). Research priorities for achieving healthy marine ecosystems and human communities in a changing climate. Frontiers in Marine Science 7, 5.
Research priorities for achieving healthy marine ecosystems and human communities in a changing climate.Crossref | GoogleScholarGoogle Scholar |

Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548.

Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature 459, 193–199.
Microbial community structure and its functional implications.Crossref | GoogleScholarGoogle Scholar |

Fuhrman, J. A., and Steele, J. A. (2008). Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquatic Microbial Ecology 53, 69–81.
Community structure of marine bacterioplankton: patterns, networks, and relationships to function.Crossref | GoogleScholarGoogle Scholar |

Galand, P. E., Pereira, O., Hochart, C., Auguet, J. C., and Debroas, D. (2018). A strong link between marine microbial community composition and function challenges the idea of functional redundancy. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 12, 2470–2478.
A strong link between marine microbial community composition and function challenges the idea of functional redundancy.Crossref | GoogleScholarGoogle Scholar |

Gao, H., Lavergne, J. M., Carpenter, C. M. G., Desai, R., Zhang, X., Gray, K., Helbling, D. E., and Wells, G. F. (2019). Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. Environmental Science: Processes & Impacts 21, 867–880.
Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed.Crossref | GoogleScholarGoogle Scholar |

García, C., Rendueles, M., and Díaz, M. (2017). Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess and Biosystems Engineering 40, 1111–1122.
Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture.Crossref | GoogleScholarGoogle Scholar |

Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrü Ck, L., Reeder, J., Temperton, B., Huse, S., Mchardy, A. C., Knight, R., Joint, I., Somerfield, P., Fuhrman, J. A., and Field, D. (2012). Defining seasonal marine microbial community dynamics. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 6107, 298–308.
Defining seasonal marine microbial community dynamics.Crossref | GoogleScholarGoogle Scholar |

Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, S., Holley, M., and Stokes, H. W. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. Journal of Bacteriology 190, 5095–5100.
The evolution of class 1 integrons and the rise of antibiotic resistance.Crossref | GoogleScholarGoogle Scholar |

Girvan, M., and Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99, 7821–7826.
Community structure in social and biological networks.Crossref | GoogleScholarGoogle Scholar |

Grover, J. P. (2000). Resource competition and community structure in aquatic microorganisms: experimental studies of algae and bacteria along a gradient of organic carbon to inorganic phosphorus supply. Journal of Plankton Research 22, 1591–1610.
Resource competition and community structure in aquatic microorganisms: experimental studies of algae and bacteria along a gradient of organic carbon to inorganic phosphorus supply.Crossref | GoogleScholarGoogle Scholar |

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., Watson, R., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., Watson, R., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., and Watson, R. (2008). A global map of human impact on marine ecosystems. Science 319, 948–953.
A global map of human impact on marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., and Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60, 845–869.
Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects.Crossref | GoogleScholarGoogle Scholar |

Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A., and Afkhami, M. E. (2021). Environmental stress destabilizes microbial networks. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 15, 1722–1734.
Environmental stress destabilizes microbial networks.Crossref | GoogleScholarGoogle Scholar |

Hirano, H., and Takemoto, K. (2019). Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics 20, 329.
Difficulty in inferring microbial community structure based on co-occurrence network approaches.Crossref | GoogleScholarGoogle Scholar |

Holman, L. E., de Bruyn, M., Creer, S., Carvalho, G., Robidart, J., and Rius, M. (2021). Animals, protists and bacteria share marine biogeographic patterns. Nature Ecology & Evolution 5, 738–746.
Animals, protists and bacteria share marine biogeographic patterns.Crossref | GoogleScholarGoogle Scholar |

Jeffries, T. C., Schmitz Fontes, M. L., Harrison, D. P., Van-Dongen-Vogels, V., Eyre, B. D., Ralph, P. J., and Seymour, J. R. (2016). Bacterioplankton dynamics within a large anthropogenically impacted urban estuary. Frontiers in Microbiology 6, 1438.
Bacterioplankton dynamics within a large anthropogenically impacted urban estuary.Crossref | GoogleScholarGoogle Scholar |

Kara, E. L., Hanson, P. C., Hu, Y. H., Winslow, L., and McMahon, K. D. (2013). A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 7, 680–684.
A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA.Crossref | GoogleScholarGoogle Scholar |

Karimi, B., Maron, P. A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., and Ranjard, L. (2017). Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters 15, 265–281.
Microbial diversity and ecological networks as indicators of environmental quality.Crossref | GoogleScholarGoogle Scholar |

Krivitsky, P.N., and Kolaczyk, E. D. (2015). On the question of effective sample size in network modeling: an asymptotic inquiry. Statistical Science 30, 184–198.
On the question of effective sample size in network modeling: an asymptotic inquiry.Crossref | GoogleScholarGoogle Scholar |

Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C., and Dieckmann, U. (2018). Complexity and stability of ecological networks: a review of the theory. Population Ecology 60, 319–345.
Complexity and stability of ecological networks: a review of the theory.Crossref | GoogleScholarGoogle Scholar |

Laroche, O., Pochon, X., Tremblay, L. A., Ellis, J. I., Lear, G., and Wood, S. A. (2018). Incorporating molecular-based functional and co-occurrence network properties into benthic marine impact assessments. FEMS Microbiology Ecology 94, fiy167.
Incorporating molecular-based functional and co-occurrence network properties into benthic marine impact assessments.Crossref | GoogleScholarGoogle Scholar |

Lawes, J. C., Neilan, B. A., Brown, M. V., Clark, G. F., and Johnston, E. L. (2016). Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling 32, 57–69.
Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms.Crossref | GoogleScholarGoogle Scholar |

Layeghifard, M., Hwang, D. M., and Guttman, D. S. (2017). Disentangling interactions in the microbiome: a network perspective. Trends in Microbiology 25, 217–228.
Disentangling interactions in the microbiome: a network perspective.Crossref | GoogleScholarGoogle Scholar |

Layeghifard, M., Hwang, D. M., and Guttman, D. S. (2018). Constructing and analyzing microbiome networks in R. Methods in Molecular Biology 1849, 243–266.
Constructing and analyzing microbiome networks in R.Crossref | GoogleScholarGoogle Scholar |

Leclerc, R. D. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molecular Systems Biology 4, 213.
Survival of the sparsest: robust gene networks are parsimonious.Crossref | GoogleScholarGoogle Scholar |

Li, F., Peng, Y., Fang, W., Altermatt, F., Xie, Y., Yang, J., and Zhang, X. (2018). Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers. Environmental Science and Technology 52, 11708–11719.
Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers.Crossref | GoogleScholarGoogle Scholar |

Li, H.-Y., Wang, H., Wang, H.-T., Xin, P.-Y., Xu, X.-H., Ma, Y., Liu, W.-P., Teng, C.-Y., Jiang, C.-L., Lou, L.-P., Arnold, W., Cralle, L., Zhu, Y.-G., Chu, J.-F., Gilbert, J. A., and Zhang, Z.-J. (2018). The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome 6, 187.
The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales.Crossref | GoogleScholarGoogle Scholar |

Li, Y., Wu, H., Shen, Y., Wang, C., Wang, P., Zhang, W., Gao, Y., and Niu, L. (2019). Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China. Environmental Pollution 246, 753–762.
Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China.Crossref | GoogleScholarGoogle Scholar |

Liao, H., Yu, K., Duan, Y., Ning, Z., Li, B., He, L., and Liu, C. (2019). Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. Science of The Total Environment 647, 1137–1147.
Profiling microbial communities in a watershed undergoing intensive anthropogenic activities.Crossref | GoogleScholarGoogle Scholar |

Lidicker, W. Z. (1979). A clarification of interactions in ecological systems. BioScience 29, 475–477.
A clarification of interactions in ecological systems.Crossref | GoogleScholarGoogle Scholar |

Lin, Y., Zhao, D., Zeng, J., Cao, X., and Jiao, C. (2019). Network analysis reveals seasonal patterns of bacterial community networks in Lake Taihu under aquaculture conditions. Water 11, 1868.
Network analysis reveals seasonal patterns of bacterial community networks in Lake Taihu under aquaculture conditions.Crossref | GoogleScholarGoogle Scholar |

Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F., and Handelsman, J. (2008). Rules of engagement: interspecies interactions that regulate microbial communities. Annual Review of Microbiology 62, 375–401.
Rules of engagement: interspecies interactions that regulate microbial communities.Crossref | GoogleScholarGoogle Scholar |

Liu, J., Fu, B., Yang, H., Zhao, M., He, B., and Zhang, X.-H. (2015). Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Frontiers in Microbiology 6, 64.
Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients.Crossref | GoogleScholarGoogle Scholar |

Liu, M., Han, X., Tong, J., Zhu, H., and Bai, X. (2020a). Mutual environmental drivers of the community composition, functional attributes and co-occurrence patterns of bacterioplankton in the composite aquatic ecosystem of Taihu watershed in China. FEMS Microbiology Ecology 96, fiaa137.
Mutual environmental drivers of the community composition, functional attributes and co-occurrence patterns of bacterioplankton in the composite aquatic ecosystem of Taihu watershed in China.Crossref | GoogleScholarGoogle Scholar |

Liu, J., Zhu, S., Liu, X., Yao, P., Ge, T., and Zhang, X. H. (2020b). Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 14, 1463–1478.
Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship.Crossref | GoogleScholarGoogle Scholar |

Liu, Z., Ma, X., He, N., Zhang, J., Wu, J., and Liu, C. (2020c). Shifts in microbial communities and networks are correlated with the soil ionome in a kiwifruit orchard under different fertilization regimes. Applied Soil Ecology 149, 103517.
Shifts in microbial communities and networks are correlated with the soil ionome in a kiwifruit orchard under different fertilization regimes.Crossref | GoogleScholarGoogle Scholar |

Lynch, M., and Neufeld, J. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology 13, 217–229.
Ecology and exploration of the rare biosphere.Crossref | GoogleScholarGoogle Scholar |

McGee, K. M., Robinson, C. V., and Hajibabaei, M. (2019). Gaps in DNA-based biomonitoring across the globe. Frontiers in Ecology and Evolution 7, 337.
Gaps in DNA-based biomonitoring across the globe.Crossref | GoogleScholarGoogle Scholar |

Makiola, A., Compson, Z. G., Baird, D. J., Barnes, M. A., Boerlijst, S. P., Bouchez, A., Brennan, G., Bush, A., Canard, E., Cordier, T., Creer, S., Curry, R. A., David, P., Dumbrell, A. J., Gravel, D., Hajibabaei, M., Hayden, B., van der Hoorn, B., Jarne, P., Jones, J. I., Karimi, B., Keck, F., Kelly, M., Knot, I. E., Krol, L., Massol, F., Monk, W. A., Murphy, J., Pawlowski, J., Poisot, T., Porter, T. M., Randall, K. C., Ransome, E., Ravigné, V., Raybould, A., Robin, S., Schrama, M., Schatz, B., Tamaddoni-Nezhad, A., Trimbos, K. B., Vacher, C., Vasselon, V., Wood, S., Woodward, G., and Bohan, D. A. (2020). Key questions for next-generation biomonitoring. Frontiers in Environmental Science 7, 197.

Mandakovic, D., Rojas, C., Maldonado, J., Latorre, M., Travisany, D., Delage, E., Bihouée, A., Jean, G., Díaz, F. P., Fernández-Gómez, B., Cabrera, P., Gaete, A., Latorre, C., Gutiérrez, R. A., Maass, A., Cambiazo, V., Navarrete, S. A., Eveillard, D., and González, M. (2018). Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Scientific Reports 8, 5875.
Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience.Crossref | GoogleScholarGoogle Scholar |

Marti, E., Jofre, J., and Balcazar, J. L. (2013). Prevalence of antibiotic resistance genes and bacterial community composition in river influenced by a wastewater treatment plant. PLoS One 8, e78906.
Prevalence of antibiotic resistance genes and bacterial community composition in river influenced by a wastewater treatment plant.Crossref | GoogleScholarGoogle Scholar |

Mason, O., and Verwoerd, M. (2008). Graph theory and networks in biology. IET Systems Biology 1, 89–119.
Graph theory and networks in biology.Crossref | GoogleScholarGoogle Scholar |

Mikhailov, I. S., Bukin, Y. S., Zakharova, Y. R., Usoltseva, M. V., Galachyants, Y. P., Sakirko, M. V., Blinov, V. V., and Likhoshway, Y. V. (2019). Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring. Journal of Microbiology 57, 252–262.
Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring.Crossref | GoogleScholarGoogle Scholar |

Murali, T. M., Dyer, M. D., Badger, D., Tyler, B. M., and Katze, M. G. (2011). Network-based prediction and analysis of HIV dependency factors. PLoS Computational Biology 7, e1002164.
Network-based prediction and analysis of HIV dependency factors.Crossref | GoogleScholarGoogle Scholar |

Newman, M. E. J. (2010). ‘Networks: An Introduction.’ (Oxford University Press: Oxford, UK.)

Paine, R. T. (1995). A conversation on refining the concept of keystone species. Conservation Biology 9, 962–964.
A conversation on refining the concept of keystone species.Crossref | GoogleScholarGoogle Scholar |

Pal, R., Sekh, A. A., Kar, S., and Prasad, D. K. (2020). Neural network based country wise risk prediction of COVID-19. Applied Sciences 10, 6448.
Neural network based country wise risk prediction of COVID-19.Crossref | GoogleScholarGoogle Scholar |

Parada, A. E., and Fuhrman, J. A. (2017). Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 11, 2510–2525.
Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor.Crossref | GoogleScholarGoogle Scholar |

Pauvert, C., Buée, M., Laval, V., Edel-Hermann, V., Fauchery, L., Gautier, A., Lesur, I., Vallance, J., and Vacher, C. (2019). Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecology 41, 23–33.
Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline.Crossref | GoogleScholarGoogle Scholar |

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., Schneider, R., and Bagos, P. G. (2011). Using graph theory to analyze biological networks. BioData Mining 4, 10.
Using graph theory to analyze biological networks.Crossref | GoogleScholarGoogle Scholar |

Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M., Maglianesi, M. A., Melián, C. J., Pitteloud, C., Roslin, T., Rohr, R., Saavedra, S., Thuiller, W., Woodward, G., Zimmermann, N. E., and Gravel, D. (2018). Comparing species interaction networks along environmental gradients. Biological Reviews 93, 785–800.
Comparing species interaction networks along environmental gradients.Crossref | GoogleScholarGoogle Scholar |

Peura, S., Bertilsson, S., Jones, R. I., and Eiler, A. (2015). Resistant microbial cooccurrence patterns inferred by network topology. Applied and Environmental Microbiology 81, 2090–2097.
Resistant microbial cooccurrence patterns inferred by network topology.Crossref | GoogleScholarGoogle Scholar |

Powell, S., Ferguson, S., and Snape, I. (2006). Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environmental Science and Technology 40, 2011–2017.

Power, M. E., and Mills, L. S. (1995). The keystone cops meet in Hilo. Trends in Ecology and Evolution 10, 182–184.
The keystone cops meet in Hilo.Crossref | GoogleScholarGoogle Scholar |

Price, G. W., Langille, M. G. I., and Yurgel, S. N. (2021). Microbial co-occurrence network analysis of soils receiving short- and long-term applications of alkaline treated biosolids. Science of the Total Environment 751, 141687.
Microbial co-occurrence network analysis of soils receiving short- and long-term applications of alkaline treated biosolids.Crossref | GoogleScholarGoogle Scholar |

Proulx, S. R., Promislow, D. E. L., and Phillips, P. C. (2005). Network thinking in ecology and evolution. Trends in Ecology and Evolution 20, 345–353.
Network thinking in ecology and evolution.Crossref | GoogleScholarGoogle Scholar |

Raffaelli, D. (2007). Food webs, body size and the curse of the latin binomial. From energy to ecosyst. In ‘Dynamics and Structure of Ecological Systems’. pp. 53–64. (Springer: Dordrecht, Netherlands.)
| Crossref |

Röttjers, L., and Faust, K. (2018). From hairballs to hypotheses – biological insights from microbial environmental factors. Bioinformatics 22, 2532–2538.
From hairballs to hypotheses – biological insights from microbial environmental factors.Crossref | GoogleScholarGoogle Scholar |

Ruan, Q., Dutta, D., Schwalbach, M. S., Steele, J. A., Fuhrman, J. A., and Sun, F. (2006). Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538.
Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors.Crossref | GoogleScholarGoogle Scholar |

Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A. M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep, K., Pawlowski, J., Petrusek, A., Piggott, J. J., Rusch, J. C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D. A., Vasquez, M. I., Vrålstad, T., Zlatkovic, S., Zupancic, M., and Stoeck, T. (2021). Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research 191, 116767.
Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring.Crossref | GoogleScholarGoogle Scholar |

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504.
Cytoscape: a software environment for integrated models of biomolecular interaction networks.Crossref | GoogleScholarGoogle Scholar |

Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology 26, 1135–1145.

Sheykhali, S., Fernández-Gracia, J., Traveset, A., and Eguíluz, V. M. (2019). Extinction-induced community reorganization in bipartite networks. Applied Network Science 4, 23.
Extinction-induced community reorganization in bipartite networks.Crossref | GoogleScholarGoogle Scholar |

Snelgrove, P. V. R. (2010). ‘Discoveries of the Census of Marine Life: Making Ocean Life Count, Discoveries of the Census of Marine Life.’ (Cambridge University Press.)
| Crossref |

Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., Chow, C. E. T., Sachdeva, R., Jones, A. C., Schwalbach, M. S., Rose, J. M., Hewson, I., Patel, A., Sun, F., Caron, D. A., and Fuhrman, J. A. (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 5, 1414–1425.
Marine bacterial, archaeal and protistan association networks reveal ecological linkages.Crossref | GoogleScholarGoogle Scholar |

Steffen, W., Persson, Å., Deutsch, L., Zalasiewicz, J., Williams, M., Richardson, K., Crumley, C., Crutzen, P., Folke, C., Gordon, L., Molina, M., Ramanathan, V., Rockström, J., Scheffer, M., Schellnhuber, H. J., and Svedin, U. (2011). The anthropocene: from global change to planetary stewardship. Ambio 40, 739–761.
The anthropocene: from global change to planetary stewardship.Crossref | GoogleScholarGoogle Scholar |

Sun, M., Dafforn, K., Brown, M., and Johnston, E. (2012). Bacterial communities are sensitive indicators of contaminant stress. Marine Pollution Bulletin 64, 1029–1038.
Bacterial communities are sensitive indicators of contaminant stress.Crossref | GoogleScholarGoogle Scholar |

Sutcliffe, B., Hose, G. C., Harford, A. J., Midgley, D. J., Greenfield, P., Paulsen, I. T., and Chariton, A. (2019). Microbial communities are sensitive indicators for freshwater sediment copper contamination. Environmental Pollution 247, 1028–1038.
Microbial communities are sensitive indicators for freshwater sediment copper contamination.Crossref | GoogleScholarGoogle Scholar |

Tang, B.-L., Yang, J., Chen, X.-L., Wang, P., Zhao, H.-L., Su, H.-N., Li, C.-Y., Yu, Y., Zhong, S., Wang, L., Lidbury, I., Ding, H., Wang, M., McMinn, A., Zhang, X.-Y., Chen, U., and Zhang, Y.-Z. (2020). A predator–prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nature Communications 11, 285.
A predator–prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria.Crossref | GoogleScholarGoogle Scholar |

Tylianakis, J. M., and Morris, R. J. (2017). Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics 48, 25–48.
Ecological networks across environmental gradients.Crossref | GoogleScholarGoogle Scholar |

Tylianakis, J. M., Laliberté, E., Nielsen, A., and Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation 143, 2270–2279.
Conservation of species interaction networks.Crossref | GoogleScholarGoogle Scholar |

Valiente-Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J., Cocucci, A., Galetti, M., García, M. B., García, D., Gómez, J. M., Jordano, P., Medel, R., Navarro, L., Obeso, J. R., Oviedo, R., Ramírez, N., Rey, P. J., Traveset, A., Verdú, M., and Zamora, R. (2015). Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology 29, 299–307.

Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, J. A., Fuhrman, J. A., Raes, J., Sun, F., Zaccone, R., and Caruso, G. (2019). Microbial enzymes in the Mediterranean Sea: relationship with climate changes. AIMS Microbiology 5, 251–271.
Microbial enzymes in the Mediterranean Sea: relationship with climate changes.Crossref | GoogleScholarGoogle Scholar |

Westerhoff, H. V., Brooks, A. N., Simeonidis, E., García-Contreras, R., He, F., Boogerd, F. C., Jackson, V. J., Goncharuk, V., and Kolodkin, A. (2014). Macromolecular networks and intelligence in microorganisms. Frontiers in Microbiology 5, 379.
Macromolecular networks and intelligence in microorganisms.Crossref | GoogleScholarGoogle Scholar |

Widder, S., Besemer, K., Singer, G. A., Ceola, S., Bertuzzo, E., Quince, C., Sloan, W. T., Rinaldo, A., and Battin, T. J. (2014). Fluvial network organization imprints on microbial co-occurrence networks. Proceedings of the National Academy of Sciences of the United States of America 111, 12799–12804.
Fluvial network organization imprints on microbial co-occurrence networks.Crossref | GoogleScholarGoogle Scholar |

Williams, R. J., Howe, A., and Hofmockel, K. S. (2014). Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers in Microbiology 5, 358.
Demonstrating microbial co-occurrence pattern analyses within and between ecosystems.Crossref | GoogleScholarGoogle Scholar |

Wolfram, S. (1999). ‘The MATHEMATICA book, version 4.’ (Cambridge University Press.)

Wu, H., Li, Y., Zhang, W., Wang, C., Wang, P., Niu, L., Du, J., and Gao, Y. (2019). Bacterial community composition and function shift with the aggravation of water quality in a heavily polluted river. Journal of Environmental Management 237, 433–441.
Bacterial community composition and function shift with the aggravation of water quality in a heavily polluted river.Crossref | GoogleScholarGoogle Scholar |

Yachi, S., and Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 96, 1463–1468.
Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis.Crossref | GoogleScholarGoogle Scholar |

Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V., and Conesa, A. (2021). A network approach to elucidate and prioritize microbial dark matter in microbial communities. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 15, 228–244.
A network approach to elucidate and prioritize microbial dark matter in microbial communities.Crossref | GoogleScholarGoogle Scholar |

Zhang, L., Tu, D., Li, X., Lu, W., and Li, J. (2020). Impact of long-term industrial contamination on the bacterial communities in urban river sediments. BMC Microbiology 20, 254.
Impact of long-term industrial contamination on the bacterial communities in urban river sediments.Crossref | GoogleScholarGoogle Scholar |

Zhou, C., Miao, T., Jiang, L., Zhang, H., Zhang, Y., and Zhang, X. (2021). Conditions that promote the formation of black bloom in aquatic microcosms and its effects on sediment bacteria. Science of The Total Environment 751, 141869.
Conditions that promote the formation of black bloom in aquatic microcosms and its effects on sediment bacteria.Crossref | GoogleScholarGoogle Scholar |

Zhu, C., Zhang, J., Zohaib, M., Mahboob, N. S., Al-Ghanim, K. A., Khan, I. A., Lu, Z., and Chen, T. (2019). Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater lake, Lake Taihu. Science of The Total Environment 669, 29–40.
Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater lake, Lake Taihu.Crossref | GoogleScholarGoogle Scholar |

Zinger, L., Bonin, A., Alsos, I., Bálint, M., Bik, H., Boyer, F., Chariton, A., Creer, S., Coissac, E., Deagle, B., De Barba, M., Dickie, I., Dumbrell, A., Ficetola, G., Fierer, N., Fumagalli, L., Gilbert, T., Jarman, S., Jumpponen, A., Kauserud, H., Orlando, L., Pansu, J., Pawlowski, J., Tedersoo, L., Thomsen, P., Willerslev, E., and Taberlet, P. (2019). DNA metabarcoding – need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology 28, 1857–1862.
DNA metabarcoding – need for robust experimental designs to draw sound ecological conclusions.Crossref | GoogleScholarGoogle Scholar |