Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
EDITORIAL

Environmental (e)DNA in the aquatic sciences: the CATG is now well and truly out of the bag

Anthony A. Chariton https://orcid.org/0000-0002-5809-3372 A B
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, Wallumattagal Campus, Macquarie University, Darug Nation, NSW 2113, Australia.

B Corresponding author. Email: anthony.chariton@mq.edu.au

Marine and Freshwater Research 74(5) i-v https://doi.org/10.1071/MF23045
Submitted: 07 March 2023  Accepted: 12 March 2023   Published: 27 March 2023


References

Aylagas, E., Borja, Á., Tangherlini, M., Dell’Anno, A., Corinaldesi, C., Michell, C. T., Irigoien, X., Danovaro, R., and Rodríguez-Ezpeleta, N. (2017). A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine Pollution Bulletin 114, 679–688.

Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J., and Hardy, C. M. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment 8, 233–238.

Chariton, A. A., Stephenson, S., Morgan, M. J., Steven, A. D. L., Colloff, M. J., Court, L. N., and Hardy, C. M. (2015). Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental Pollution 203, 165–174.

Codello, A., Hose, G. C., and Chariton, A. (2023). Microbial co-occurrence networks as a biomonitoring tool for aquatic environments: a review. Marine and Freshwater Research 74, 409–422.
Microbial co-occurrence networks as a biomonitoring tool for aquatic environments: a review.Crossref | GoogleScholarGoogle Scholar |

Cordier, T., Alonso-Sáez, L., Apothéloz-Perret-Gentil, L., Aylagas, E., Bohan, D. A., Bouchez, A., Chariton, A., Creer, S., Frühe, L., Keck, F., Keeley, N., Laroche, O., Leese, F., Pochon, X., Stoeck, T., Pawlowski, J., and Lanzén, A. (2021). Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Molecular Ecology 30, 2937–2958.

Cordier, T., Esling, P., Lejzerowicz, F., Visco, J., Ouadahi, A., Martins, C., Cedhagen, T., and Pawlowski, J. (2017). Predicting the ecological quality status of marine environments from edna metabarcoding data using supervised machine learning. Environmental Science & Technology 51, 9118–9126.

Deagle, B. E., Kirkwood, R., and Jarman, S. N. (2009). Analysis of australian fur seal diet by pyrosequencing prey DNA in faeces. Molecular Ecology 18, 2022–2038.

Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., and Lodge, D. M. (2016). Environmental DNA (edna) detects the invasive rusty crayfish orconectes rusticus at low abundances. Journal of Applied Ecology 53, 722–732.

Faust, K., and Raes, J. (2012). Microbial interactions: From networks to models. Nature Reviews Microbiology 10, 538–550.

Ficetola, G. F., Miaud, C., Pompanon, F., and Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters 4, 423–425.

Ficetola, G. F., and Taberlet, P. (2023). Towards exhaustive community ecology via DNA metabarcoding. Molecular Ecology , .
Towards exhaustive community ecology via DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar |

Frühe, L., Cordier, T., Dully, V., Breiner, H. W., Lentendu, G., Pawlowski, J., Martins, C., Wilding, T. A., and Stoeck, T. (2021). Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using edna metabarcodes. Molecular Ecology 30, 2988–3006.

Gardham S., Hose G. C., Stephenson S., Chariton A. A. (2014) DNA metabarcoding meets experimental ecotoxicology: advancing knowledge on the ecological effects of copper in freshwater ecosystems. In ‘Advances in ecological research. Vol. 51’. (Eds G. Woodward, A. J. Dumbrell, D. J. Baird and M. Hajibabaei) pp. 79–104. (Academic Press)

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C., and Baird, D. J. (2011). Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497.

Hinlo, R., Furlan, E., Suitor, L., and Gleeson, D. (2017). Environmental DNA monitoring and management of invasive fish: Comparison of edna and fyke netting. Management of Biological Invasions 8, 89–100.

Jarman, S. N., Berry, O., and Bunce, M. (2018). The value of environmental DNA biobanking for long-term biomonitoring. Nature Ecology & Evolution 2, 1192–1193.

Laroche, O., Wood, S. A., Tremblay, L. A., Ellis, J. I., Lejzerowicz, F., Pawlowski, J., Lear, G., Atalah, J., and Pochon, X. (2016). First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Marine Environmental Research 120, 225–235.

Leese, F., Altermatt, F., Bouchez, A., Ekrem, T., Hering, D., Meissner, K., Mergen, P., Pawlowski, J., Piggott, J. J., Rimet, F., Steinke, D., Taberlet, P., Weigand, A. M., Abarenkov, K., Beja, P., Bervoets, L., Björnsdóttir, S., Boets, P., Boggero, A., Bones, A. M., Borja, Á., Bruce, K., Bursić, V., Carlsson, J., Čiampor, F., Čiamporová-Zatovičová, Z., Coissac, E., Costa, F., Costache, M., Creer, S., Csabai, Z., Deiner, K., DelValls, Á., Drakare, S., Duarte, S., Eleršek, T., Fazi, S., Fišer, C., Flot, J. -F., Fonseca, V., Fontaneto, D., Grabowski, M., Graf, W., Guðbrandsson, J., Hellström, M., Hershkovitz, Y., Hollingsworth, P., Japoshvili, B., Jones, J. I., Kahlert, M., Kalamujic Stroil, B., Kasapidis, P., Kelly, M. G., Kelly-Quinn, M., Keskin, E., Kõljalg, U., Ljubešić, Z., Maček, I., Mächler, E., Mahon, A., Marečková, M., Mejdandzic, M., Mircheva, G., Montagna, M., Moritz, C., Mulk, V., Naumoski, A., Navodaru, I., Padisák, J., Pálsson, S., Panksep, K., Penev, L., Petrusek, A., Pfannkuchen, M. A., Primmer, C. R., Rinkevich, B., Rotter, A., Schmidt-Kloiber, A., Segurado, P., Speksnijder, A., Stoev, P., Strand, M., Šulčius, S., Sundberg, P., Traugott, M., Tsigenopoulos, C., Turon, X., Valentini, A., van der Hoorn, B., Várbíró, G., Vasquez Hadjilyra, M. I., Viguri, J., Vitonytė, I., Vogler, A., Vrålstad, T., Wägele, W., Wenne, R., Winding, A., Woodward, G., Zegura, B., and Zimmermann, J. (2016). Dnaqua-net: developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in europe. Research Ideas and Outcomes 2, e11321.

Lopes, C. M., Santos, M. T. T., Baêta, D., Sabbag, A. F., and Haddad, C. F. B. (2023). Environmental DNA as a non-invasive alternative for surveying aquatic communities in tank bromeliads. Marine and Freshwater Research 74, 441–448.
Environmental DNA as a non-invasive alternative for surveying aquatic communities in tank bromeliads.Crossref | GoogleScholarGoogle Scholar |

Ngugi, M. R., Neldner, V. J., Dowling, R. M., and Li, J. (2022). Recruitment and demographic structure of floodplain tree species in the Queensland Murray–Darling Basin, Australia. Ecological Management & Restoration 23, 64–73.

Pansu, J., Chapman, M. B., Hose, G. C., and Chariton, A. A. (2023). Comparison of an extracellular v. total DNA extraction approach for environmental DNA-based monitoring of sediment biota. Marine and Freshwater Research 74, 449–462.
Comparison of an extracellular v. total DNA extraction approach for environmental DNA-based monitoring of sediment biota.Crossref | GoogleScholarGoogle Scholar |

Pollitt, L., Korbel, K., Dabovic, J., Chariton, A., and Hose, G. C. (2023). Can eDNA be an indicator of tree groundwater use? A perspective. Marine and Freshwater Research 74, 423–431.
Can eDNA be an indicator of tree groundwater use? A perspective.Crossref | GoogleScholarGoogle Scholar |

Schnell, I. B., Sollmann, R., Calvignac-Spencer, S., Siddall, M. E., Yu, D. W., Wilting, A., and Gilbert, M. T. P. (2015). Idna from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool – prospects, pitfalls and avenues to be developed. Frontiers in Zoology 12, 24.

Seeber, P. A., McEwen, G. K., Löber, U., Förster, D. W., East, M. L., Melzheimer, J., and Greenwood, A. D. (2019). Terrestrial mammal surveillance using hybridization capture of environmental DNA from african waterholes. Molecular Ecology Resources 19, 1486–1496.

Shehzad, W., Riaz, T., Nawaz, M. A., Miquel, C., Poillot, C., Shah, S. A., Pompanon, F., Coissac, E., and Taberlet, P. (2012). Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in pakistan. Molecular Ecology 21, 1951–1965.

Sun, M. Y., Dafforn, K. A., Brown, M. V., and Johnston, E. L. (2012). Bacterial communities are sensitive indicators of contaminant stress. Marine Pollution Bulletin 64, 1029–1038.

Sutcliffe, B., Hose, G. C., Harford, A. J., Midgley, D. J., Greenfield, P., Paulsen, I. T., and Chariton, A. A. (2019). Microbial communities are sensitive indicators for freshwater sediment copper contamination. Environmental Pollution 247, 1028–1038.

Taberlet P., Bonin A., Zinger L., Coissac E. (2018) ‘Environmental DNA: for biodiversity research and monitoring.’ (Oxford University Press)

Tablerlet, P., Coissac, R., Hajibabaei, M., and Rieseberg, L. (2012). Molecular ecology special issue on environmental DNA. Molecular Ecology 21, 1789–2050.

West, K. M., Heydenrych, M., Lines, R., Tucker, T., Fossette, S., Whiting, S., and Bunce, M. (2023). Development of a 16S metabarcoding assay for the environmental DNA (eDNA) detection of aquatic reptiles across northern Australia. Marine and Freshwater Research 74, 432–440.
Development of a 16S metabarcoding assay for the environmental DNA (eDNA) detection of aquatic reptiles across northern Australia.Crossref | GoogleScholarGoogle Scholar |

Wilcox, T. M., Zarn, K. E., Piggott, M. P., Young, M. K., McKelvey, K. S., and Schwartz, M. K. (2018). Capture enrichment of aquatic environmental DNA: a first proof of concept. Molecular Ecology Resources 18, 1392–1401.

Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., Chariton, A. A., Creer, S., Coissac, E., and Deagle, B. E. (2019). DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology 28, 1857–1862.

Zinger, L., Chave, J., Coissac, E., Iribar, A., Louisanna, E., Manzi, S., Schilling, V., Schimann, H., Sommeria-Klein, G., and Taberlet, P. (2016). Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology and Biochemistry 96, 16–19.