Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A decade-long study on mayfly emergence patterns

Marina Vilenica https://orcid.org/0000-0003-2053-2461 A C and Marija Ivković B
+ Author Affiliations
- Author Affiliations

A University of Zagreb, Faculty of Teacher Education, Trg Matice Hrvatske 12, HR-44250 Petrinja, Croatia.

B University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov Trg 6, HR-10000 Zagreb, Croatia.

C Corresponding author. Email: marina.vilenica@gmail.com.

Marine and Freshwater Research 72(4) 507-519 https://doi.org/10.1071/MF20162
Submitted: 26 May 2020  Accepted: 13 August 2020   Published: 29 September 2020

Abstract

Mayfly assemblage structure, microhabitat preference and emergence patterns were studied over a decade in two types of karst freshwater habitats, namely, a spring and two tufa barriers. Mayfly adults were collected using pyramidal emergence traps. A total of nine species was recorded. Tufa barriers had a higher species richness but a lower abundance than did the spring. All sites were dominated by species typical of the rhithral zone. The spring had the highest share of grazers, whereas gatherers (collectors and filter feeders) dominated at tufa barriers, with minimal changes through the years. Mayfly abundance at the spring was higher in years with a higher discharge. The opposite was recorded for tufa barriers, which could be related to drift and food availability. Mayflies emerged from the spring between March and November, most probably being triggered by the photoperiod. Emergence from tufa barriers was seasonal and related to changes in water temperature. Some species exhibited typical central European emergence patterns, whereas, in some others, certain discrepancies were recorded. Several taxa showed preference towards emergence from a particular microhabitat. The present study showed that for fine ecological data on aquatic insects, long-term studies are essential.

Keywords: functional feeding groups, long-term, phenology, stream-zonation preference, water temperature.


References

Alba-Tercedor, J. (1986). Ecología distribución y ciclos de desarrollo de efemerópteros de Sierra Nevada (Granada, Espaňa). II: Baetidae (Insecta: Ephemeroptera). Limnetica 1, 234–246.

Baranov, V., Jourdan, J., Pilotto, F., Wagner, R., and Haase, P. (2020). Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conservation Biology 34, 1241–1251.
Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years.Crossref | GoogleScholarGoogle Scholar | 32022305PubMed |

Bauernfeind, E., and Moog, O. (2000). Mayñies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422/423, 71–83.
Mayñies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach.Crossref | GoogleScholarGoogle Scholar |

Bauernfeind, E., and Soldán, T. (2012). ‘The Mayflies of Europe (Ephemeroptera).’ (Apollo Books: Ollerup, Denmark.)

Bergman, E. A., and Hilsenhoff, W. L. (1978). Parthenogenesis in the mayfly genus Baetis (Ephemeroptera: Baetidae). Annals of the Entomological Society of America 71, 167–168.
Parthenogenesis in the mayfly genus Baetis (Ephemeroptera: Baetidae).Crossref | GoogleScholarGoogle Scholar |

Brittain, J. E., and Sartori, M. (2003). Ephemeroptera (mayflies). In ‘Encylopedia of Insects’. (Eds V. H. Resh and R. T. Cardé.) pp. 373–380. (Academic Press: Amsterdam, Netherlands.)

Buffagni, A., Armanini, D. G., Cazzola, M., Alba-Tercedor, J., López-Rodríguez, M. J., Murphy, J., Sandin, L., and Schmidt-Kloiber, A. (2019). Dataset ‘Ephemeroptera’. Available at www.freshwaterecology.info - the taxa and autecology database for freshwater organisms, version 7.0 [accessed 26 October 2019].

Cid, N., Ibáñez, C., and Prat, N. (2008). Life history and production of the burrowing mayfly Ephoron virgo (Olivier, 1791) (Ephemeroptera: Polymitarcyidae) in the lower Ebro River: a comparison after 18 years. Aquatic Insects 30, 163–178.
Life history and production of the burrowing mayfly Ephoron virgo (Olivier, 1791) (Ephemeroptera: Polymitarcyidae) in the lower Ebro River: a comparison after 18 years.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2006). PRIMER V6: User Manual/Tutorial. (Primer-E: Plymouth, UK.)

Clifford, H. F. (1982). Life cycles of mayflies (Ephemeroptera), with special reference to voltinism. Quaestiones Entomologicae 18, 15–90.

Corbet, P. S. (1964). Temporal patterns of emergence in aquatic insects. Canadian Entomologist 96, 264–279.
Temporal patterns of emergence in aquatic insects.Crossref | GoogleScholarGoogle Scholar |

Dell Inc. (2016). Dell Statistica (data analysis software system), version 13. software.dell.com.

Durance, I., and Ormerod, S. J. (2007). Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13, 942–957.
Climate change effects on upland stream macroinvertebrates over a 25-year period.Crossref | GoogleScholarGoogle Scholar |

Everall, N. C., Johnson, M. F., Wilby, R. L., and Bennett, C. J. (2015). Detecting phenology change in the mayfly Ephemera danica: responses to spatial and temporal water temperature variations. Ecological Entomology 40, 95–105.
Detecting phenology change in the mayfly Ephemera danica: responses to spatial and temporal water temperature variations.Crossref | GoogleScholarGoogle Scholar |

Flannagan, J. F., and Lawler, G. H. (1972). Emergence of caddisflies (Trichoptera) and mayflies (Ephemeroptera) from Heming lake, Manitoba. Canadian Entomologist 104, 173–183.
Emergence of caddisflies (Trichoptera) and mayflies (Ephemeroptera) from Heming lake, Manitoba.Crossref | GoogleScholarGoogle Scholar |

Fukui, D., Murakami, M., Nakano, S., and Aoi, T. (2006). Effect of emergent aquatic insects on bat foraging in a riparian forest. Journal of Animal Ecology 75, 1252–1258.
Effect of emergent aquatic insects on bat foraging in a riparian forest.Crossref | GoogleScholarGoogle Scholar | 17032357PubMed |

Garcia, C., Gibbins, C. N., Pardo, I., and Batalla, R. J. (2017). Long term flow change threatens invertebrate diversity in temporary streams: evidence from an island. The Science of the Total Environment 580, 1453–1459.
Long term flow change threatens invertebrate diversity in temporary streams: evidence from an island.Crossref | GoogleScholarGoogle Scholar | 28027801PubMed |

Gibbs, K. E., and Siebenmann, M. (1996). Life history attributes of the rare mayfly Siphlonisca aerodromia Needham (Ephemeroptera: Siphlonuridae). Journal of the North American Benthological Society 15, 95–105.
Life history attributes of the rare mayfly Siphlonisca aerodromia Needham (Ephemeroptera: Siphlonuridae).Crossref | GoogleScholarGoogle Scholar |

Giller, P. S., and Malmqvist, B. (1998). ‘The Biology of Streams and Rivers.’ (Oxford University Press: New York, NY, USA.)

Gotelli, N. J., and Colwell, R. K. (2011). Estimating species richness. Part II, Chapter 4. In ‘Biological Diversity: Frontiers in Measurement and Assessment’. 1st edn. (Eds A. E. Magurran and B. J. McGill.) pp. 39–54. (Oxford University Press: New York, NY, USA.)

Hawkins, P. C. (1986). Variation in individual growth rates and population densities of ephemerellid mayflies. Ecology 67, 1384–1395.
Variation in individual growth rates and population densities of ephemerellid mayflies.Crossref | GoogleScholarGoogle Scholar |

Hogg, I. D., and Williams, D. D. (1996). Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77, 395–407.
Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation.Crossref | GoogleScholarGoogle Scholar |

Illies, J., and Masteller, E. C. (1977). A possible explanation of emergence patterns of Baetis vernus on the Breitenbach. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 62, 315–321.
A possible explanation of emergence patterns of Baetis vernus on the Breitenbach.Crossref | GoogleScholarGoogle Scholar |

Ittekkot, V., Safiullah, S., Mycke, B., and Seifert, R. (1985). Seasonal variability and geochemical significance of organic matter in the River Ganges, Bangladesh. Nature 317, 800–802.
Seasonal variability and geochemical significance of organic matter in the River Ganges, Bangladesh.Crossref | GoogleScholarGoogle Scholar |

IUCN (1979). ‘IUCN Review.’ (Union internationale pour la conservation de la nature et de ses ressources - International Union for Conservation of Nature and Natural Resources: Morges, Switzerland.)

Ivković, M., and Pont, A. (2016). Long-time emergence patterns of Limnophora species (Diptera, Muscidae) in specific karst habitats: tufa barriers. Limnologica 61, 29–35.
Long-time emergence patterns of Limnophora species (Diptera, Muscidae) in specific karst habitats: tufa barriers.Crossref | GoogleScholarGoogle Scholar |

Ivković, M., Kesić, M., Mihaljević, Z., and Kúdela, M. (2014). Emergence patterns and ecological associations of some haematophagous blackfly species along an oligotrophic hydrosystem. Medical and Veterinary Entomology 28, 94–102.
Emergence patterns and ecological associations of some haematophagous blackfly species along an oligotrophic hydrosystem.Crossref | GoogleScholarGoogle Scholar | 23834394PubMed |

Ivković, M., Miliša, M., Baranov, V., and Mihaljević, Z. (2015). Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: the role of canopy uncovered. Limnologica 54, 44–57.
Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: the role of canopy uncovered.Crossref | GoogleScholarGoogle Scholar |

Jackson, J. K., and Füreder, L. (2006). Long-term studies of freshwater macroinvertebrates: a review of the frequency, duration and ecological significance. Freshwater Biology 51, 591–603.
Long-term studies of freshwater macroinvertebrates: a review of the frequency, duration and ecological significance.Crossref | GoogleScholarGoogle Scholar |

Jacobus, L. M., Macadam, C. R., and Sartori, M. (2019). Mayflies (Ephemeroptera) and their contributions to ecosystem services. Insects 10, 170.
Mayflies (Ephemeroptera) and their contributions to ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Khoo, S. G. (1968). Experimental studies on diapause in stoneflies. I. Nymphs of Capnia bifrons (Newman). Proceedings of the Royal Entomological Society of London [Series A] 43, 40–48.
Experimental studies on diapause in stoneflies. I. Nymphs of Capnia bifrons (Newman).Crossref | GoogleScholarGoogle Scholar |

Kureck, A., and Fontes, R. J. (1996). The life cycle and emergence of Ephoron virgo, a large potamal mayfly that has returned to the River Rhine. Archiv für Hydrobiologie 113, 319–323.

Lenat, D. R., and Penrose, D. L. (1996). History of the EPT taxa richness metric. Journal of the North American Benthological Society 13, 305–306.

Málnás, K., Ambrus, A., Müller, Z., Tóth, A. P., and Kiss, B. (2016). Re-appearance of Palingenia longicauda (Olivier, 1791) (Ephemeroptera, Palingeniidae) on the Hungarian Danube section: range recovery of the species at the Rába-district. Folia Historico-Naturalia Musei Matraensis 40, 21–25.

Miliša, M., Habdija, I., Primc-Habdija, B., Radanović, I., and Matoničkin Kepčija, R. (2006). The role of flow velocity in the vertical distribution of particulate organic matter on moss- covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia 553, 231–243.
The role of flow velocity in the vertical distribution of particulate organic matter on moss- covered travertine barriers of the Plitvice Lakes (Croatia).Crossref | GoogleScholarGoogle Scholar |

Müller-Liebenau, I. (1969). Revision der europäischen Arten der Gattung Baetis Leach, 1815. (Insecta, Ephemeroptera). Gewässer und Abwässer 66/67, 95–101.

Nakano, S., and Murakami, M. (2001). Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 98, 166–170.
Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs.Crossref | GoogleScholarGoogle Scholar | 11136253PubMed |

Peric, M. S., Miliša, M., Matoničkin Kepčija, R., Primc-Habdija, B., and Habdija, I. (2011). Seasonal and fine-scale spatial drift patterns in tufa-depositing barrage hydrosystem. Fundamental and Applied Limnology 178, 131–145.
Seasonal and fine-scale spatial drift patterns in tufa-depositing barrage hydrosystem.Crossref | GoogleScholarGoogle Scholar |

Power, M. E., and Rainey, W. E. (2000). Food webs and resource sheds: towards spatially delimiting trophic interactions. In ‘Ecological Consequences of Habitat Heterogeneity’. (Eds M. J. Hutchings, E. A. John, and A. J. A. Stewart.) pp. 291–314. (Blackwell Scientific: Oxford, UK.)

Rader, R. B., and Ward, J. V. (1989). Influence of impoundments on mayfly diets, life histories and production. Journal of the North American Benthological Society 8, 64–73.
Influence of impoundments on mayfly diets, life histories and production.Crossref | GoogleScholarGoogle Scholar |

Ridl, A., Vilenica, M., Ivković, M., Popijač, A., Sivec, I., Miliša, M., and Mihaljević, Z. (2018). Environmental drivers influencing stonefly assemblages along a longitudinal gradient in karst lotic habitats. Journal of Limnology 77, 412–427.
Environmental drivers influencing stonefly assemblages along a longitudinal gradient in karst lotic habitats.Crossref | GoogleScholarGoogle Scholar |

Risser, P. G. (1991). ‘Long-term Ecological Research: An International Perspective.’ (Wiley: New York, NY, USA.)

Sættem, L. M., and Brittain, J. E. (1985). Life cycles and emergence of Ephemeroptera and Plecoptera from Myrkdalsvatn, an oligotrophic lake in western Norway. Aquatic Insects 7, 229–241.
Life cycles and emergence of Ephemeroptera and Plecoptera from Myrkdalsvatn, an oligotrophic lake in western Norway.Crossref | GoogleScholarGoogle Scholar |

Sand, K., and Brittain, J. E. (2009). Life cycle shifts in Baetis rhodani (Ephemeroptera) in the Norwegian mountains. Aquatic Insects 31, 283–291.
Life cycle shifts in Baetis rhodani (Ephemeroptera) in the Norwegian mountains.Crossref | GoogleScholarGoogle Scholar |

Schmidt-Kloiber, A., and Hering, D. (2015). www.freshwaterecology.info: an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53, 271–282.
www.freshwaterecology.info: an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences.Crossref | GoogleScholarGoogle Scholar |

Šegota, T., and Filipčić, A. (2003). Köppenova podjela klima i hrvatsko nazivlje. Geoadria 8, 17–23.
Köppenova podjela klima i hrvatsko nazivlje.Crossref | GoogleScholarGoogle Scholar |

Sparks, T. H., Preston, C. D., and Roy, D. B. (2010). ‘Climate Change. Silent Summer the State of Wildlife in Britain and Ireland.’ (Cambridge University Press: Cambridge, UK.)

Špoljar, M., Primc-Habdija, B., and Habdija, I. (2007). Transport of seston in the karstic hydrosystem of the Plitvice Lakes (Croatia). Hydrobiologia 579, 199–209.
Transport of seston in the karstic hydrosystem of the Plitvice Lakes (Croatia).Crossref | GoogleScholarGoogle Scholar |

Svensson, B. (1977). Life cycle, energy fluctuations and sexual differentiation in Ephemera danica (Ephemeroptera), a stream-living mayfly. Oikos 29, 78–86.
Life cycle, energy fluctuations and sexual differentiation in Ephemera danica (Ephemeroptera), a stream-living mayfly.Crossref | GoogleScholarGoogle Scholar |

Vannote, R. L., and Sweeney, B. W. (1980). Geographical analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115, 667–695.
Geographical analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities.Crossref | GoogleScholarGoogle Scholar |

Vilenica, M., Ivković, M., Sartori, M., and Mihaljević, Z. (2017a). Mayfly emergence along an oligotrophic Dinaric karst hydrosystem: spatial and temporal patterns, and species–environment relationship. Aquatic Ecology 51, 417–433.
Mayfly emergence along an oligotrophic Dinaric karst hydrosystem: spatial and temporal patterns, and species–environment relationship.Crossref | GoogleScholarGoogle Scholar |

Vilenica, M., Mičetić Stanković, V., Sartori, M., Kučinić, M., and Mihaljević, Z. (2017b). Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst. Knowledge and Management of Aquatic Ecosystems 418, 14.
Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst.Crossref | GoogleScholarGoogle Scholar |

Vilenica, M., Bilić, M., Mičetić Stanković, V., and Kučinić, M. (2018). Mayfly ecological traits in a European karst spring: species, microhabitats and life histories. Community Ecology 19, 248–258.
Mayfly ecological traits in a European karst spring: species, microhabitats and life histories.Crossref | GoogleScholarGoogle Scholar |

Vinson, M. R. (2001). Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecological Applications 11, 711–730.
Long-term dynamics of an invertebrate assemblage downstream from a large dam.Crossref | GoogleScholarGoogle Scholar |

Wagner, R., and Gathmann, O. (1996). Long-term studies on aquatic dance flies (Diptera, Empididae) 1983–1993: Distribution and size patterns along the stream, abundance changes between years and the influence of environmental factors on the community. Archiv für Hydrobiologie 137, 385–410.

Wagner, R., and Schmidt, H. H. (2004). Yearly discharge patterns determine species abundance and community diversity: analysis of a 25-year record from the Breitenbach. Archiv für Hydrobiologie 161, 511–540.
Yearly discharge patterns determine species abundance and community diversity: analysis of a 25-year record from the Breitenbach.Crossref | GoogleScholarGoogle Scholar |

Wagner, R., Dapper, T., and Schmidt, H. H. (2000). The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks. Hydrobiologia 422/423, 143–152.
The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks.Crossref | GoogleScholarGoogle Scholar |

Wagner, R., Marxsen, J., Zwick, P., and Cox, E. J. (2011). ‘Central European Stream Ecosystems: The Long-term Study of the Breitenbach.’ (Wiley: New York, NY, USA.)

Ward, J. V., and Stanford, J. A. (1982). Thermal responses in the evolutionary ecology of the aquatic insects. Annual Review of Entomology 27, 97–117.
Thermal responses in the evolutionary ecology of the aquatic insects.Crossref | GoogleScholarGoogle Scholar |

Zaninović, K., Gajić-Čapka, M., Perčec Tadić, M., Vučetić, M., Milković, J., Bajić, A., Cindrić, K., Cvitan, L., Katušin, Z., Kaučić, D., Likso, T., Lončar, E., Lončar, Ž., Mihajlović, D., Pandžić, K., Patarčić, M., Srnec, L., and Vučetić, V. (2008). ‘Klimatski atlas Hrvatske/Climate Atlas of Croatia 1961–1990, 1971–2000.’ (Državni Hidrometeorološki Zavod: Zagreb, Croatia.) [In Croatian]