Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Does the native predator Trophon geversianus exert top-down control on the invasive barnacle Balanus glandula on Patagonian rocky shores?

María José Pio A , María M. Mendez https://orcid.org/0000-0003-4582-7266 B C G , David E. Galván D , Gregorio Bigatti B D E , Kaydee West F and Gregory S. Herbert F
+ Author Affiliations
- Author Affiliations

A Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (Consejo Nacional de Investigaciones Científicas y Técnicas), Avenida Angel Gallardo 470, Buenos Aires, C1405DJR, Argentina.

B Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (Instituto de Biología de Organismos Marinos, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas), Bulevar Brown 2915, Puerto Madryn, U9120ACD, Argentina.

C Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Bulevar Brown 3700, Puerto Madryn, U9120ACD, Argentina.

D Centro para el Estudio de Sistemas Marinos (Centro para el Estudio de Sistemas Marinos, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas), Bulevar Brown 2915, Puerto Madryn U9120ACD, Argentina.

E Universidad Espíritu Santo, Avenida Samborondón kilómetro 2.5, Samborondón, 092301, Ecuador.

F School of Geosciences, University of South Florida, Tampa, FL 33620, USA.

G Corresponding author. Email: mendez@cenpat-conicet.gob.ar

Marine and Freshwater Research 70(11) 1552-1560 https://doi.org/10.1071/MF18420
Submitted: 1 November 2018  Accepted: 24 March 2019   Published: 30 May 2019

Abstract

Trophic interactions between the native gastropod predator Trophon geversianus and the invasive barnacle Balanus glandula may have facilitated the successful expansion of the barnacle along rocky intertidal coastlines in Argentina. In this study, through field observations and a stable isotope reconstruction of the diet of T. geversianus, we assessed whether and how frequently this drilling muricid gastropod consumes the invasive B. glandula on a Patagonian rocky shore. Field observations indicated that B. glandula and T. geversianus co-occur in the middle intertidal. Feeding observations and stable carbon and nitrogen isotope dietary reconstructions showed that T. geversianus readily and successfully consumes B. glandula, but at low rates (4% of diet) relative to native mussel prey, which compete with B. glandula for space. This study shows that T. geversianus exerts little top-down control on this invasive barnacle on Patagonian rocky shores. The success of B. glandula on these shores is plausibly enhanced directly by this weak interaction and indirectly by the preference of T. geversianus for native prey rather than the absence of predators or invader immunity from predation. The results of this study complement previous studies that have shown that tolerance to extreme desiccation stress in harsh intertidal environments is crucial for the establishment of B. glandula.

Additional keywords: environmental stress, indirect facilitation, invasive species, trophic interaction.


References

Agrawal, A. A., Ackerly, D. D., Adler, F., Arnold, A. E., Cáceres, C., Doak, D. F., Post, E., Hudson, P. J., Maron, J., Mooney, K. A., and Power, M. (2007). Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5, 145–152.
Filling key gaps in population and community ecology.Crossref | GoogleScholarGoogle Scholar |

Bertellotti, M., Pagnoni, G., and Yorio, P. (2003). Comportamiento de alimentación de la gaviota cocinera (Larus dominicanus) durante la temporada no reproductiva en playas arenosas de Península Valdés, Argentina. El Hornero 18, 37–42.

Bertness, M. D., Crain, C. M., Silliman, B. R., Bazterrica, M. C., Reyna, M. V., Hidalgo, F., and Farina, J. K. (2006). The community structure of western Atlantic Patagonian rocky shores. Ecological Monographs 76, 439–460.
The community structure of western Atlantic Patagonian rocky shores.Crossref | GoogleScholarGoogle Scholar |

Carroll, M. L., and Wethey, D. S. (1990). Predator foraging behavior: effect of a novel prey species on prey selection by a marine intertidal gastropod. Journal of Experimental Marine Biology and Ecology 139, 101–117.
Predator foraging behavior: effect of a novel prey species on prey selection by a marine intertidal gastropod.Crossref | GoogleScholarGoogle Scholar |

Connell, J. H. (1970). A predatory-prey system in the marine intertidal region. I. Balanus glandula and several predatory species of Thais. Ecological Monographs 40, 49–78.
A predatory-prey system in the marine intertidal region. I. Balanus glandula and several predatory species of Thais.Crossref | GoogleScholarGoogle Scholar |

Cresson, P., Ruitton, S., and Harmelin-Vivien, M. (2016). Feeding strategies of co-occurring suspension feeders in an oligotrophic environment. Food Webs 6, 19–28.
Feeding strategies of co-occurring suspension feeders in an oligotrophic environment.Crossref | GoogleScholarGoogle Scholar |

Curelovich, J., Lovrich, G. A., and Calcagno, J. A. (2016). The role of the predator Trophon geversianus in an intertidal population of Mytilus chilensis in a rocky shore of the Beagle Channel, Tierra del Fuego, Argentina. Marine Biology Research 12, 1053–1063.
The role of the predator Trophon geversianus in an intertidal population of Mytilus chilensis in a rocky shore of the Beagle Channel, Tierra del Fuego, Argentina.Crossref | GoogleScholarGoogle Scholar |

Dietl, G. P., and Herbert, G. S. (2005). Influence of alternative shell-drilling behaviours on attack duration of the predatory snail, Chicoreus dilectus. Journal of Zoology 265, 201–206.
Influence of alternative shell-drilling behaviours on attack duration of the predatory snail, Chicoreus dilectus.Crossref | GoogleScholarGoogle Scholar |

Elías, R., and Vallarino, E. A. (2001). The introduced barnacle Balanus glandula (Darwin) in the Mar del Plata port as a structuring species in the intertidal community. Investigaciones Marinas 29, 37–46.
The introduced barnacle Balanus glandula (Darwin) in the Mar del Plata port as a structuring species in the intertidal community.Crossref | GoogleScholarGoogle Scholar |

Gaines, S., and Roughgarden, J. (1985). Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Sciences of the United States of America 82, 3707–3711.
Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone.Crossref | GoogleScholarGoogle Scholar | 16593571PubMed |

Galván, D. E., Sweeting, C. J., and Polunin, N. V. C. (2012). Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169, 1083–1093.
Methodological uncertainty in resource mixing models for generalist fishes.Crossref | GoogleScholarGoogle Scholar | 22349753PubMed |

Gordillo, S. (1994). Perforaciones en bivalvos subfósiles y actuales del Canal Beagle, Tierra del Fuego. Ameghiniana 31, 177–185.

Gordillo, S., and Archuby, F. (2012). Predation by drilling gastropods and asteroids upon mussels in rocky shallow shores of southernmost South America: a multi-faceted approach. Acta Palaeontologica Polonica 57, 633–646.
Predation by drilling gastropods and asteroids upon mussels in rocky shallow shores of southernmost South America: a multi-faceted approach.Crossref | GoogleScholarGoogle Scholar |

Grosholz, E. D. (1996). Contrasting rates of spread for introduced species in terrestrial and marine systems. Ecology 77, 1680–1686.
Contrasting rates of spread for introduced species in terrestrial and marine systems.Crossref | GoogleScholarGoogle Scholar |

Hackerott, S., Valdivia, A., Green, J. S., Côté, I. M., Cox, C. E., Akins, L., Layman, C. A., Precht, W. F., and Bruno, J. F. (2013). Native predators do not influence invasion success of pacific lionfish on Caribbean reefs. PLoS One 8, e68259.
Native predators do not influence invasion success of pacific lionfish on Caribbean reefs.Crossref | GoogleScholarGoogle Scholar | 23874565PubMed |

Harley, C. D. G., and Helmuth, B. S. T. (2003). Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnology and Oceanography 48, 1498–1508.
Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation.Crossref | GoogleScholarGoogle Scholar |

Harvey, J. A., Bukovinsky, T., and van der Putten, W. (2010). Interactions between invasive plants and insects herbivores: a plea for a multitrophic perspective. Biological Conservation 143, 2251–2259.
Interactions between invasive plants and insects herbivores: a plea for a multitrophic perspective.Crossref | GoogleScholarGoogle Scholar |

Hidalgo, F. J., Silliman, B. R., Bazterrica, M. C., and Bertness, M. D. (2007). Predation on the rocky shores of Patagonia, Argentina. Estuaries and Coasts 30, 886–894.
Predation on the rocky shores of Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Jackson, M. C., and Britton, J. R. (2014). Divergence in the trophic niche of sympatric freshwater invaders. Biological Invasions 16, 1095–1103.
Divergence in the trophic niche of sympatric freshwater invaders.Crossref | GoogleScholarGoogle Scholar |

Jackson, A. L., Inger, R., Parnell, A., and Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. Journal of Animal Ecology 80, 595–602.
Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R.Crossref | GoogleScholarGoogle Scholar | 21401589PubMed |

Kado, R. (2003). Invasion of Japanese shores by the NE Pacific barnacle Balanus glandula and its ecological and biogeographical impact. Marine Ecology Progress Series 249, 199–206.
Invasion of Japanese shores by the NE Pacific barnacle Balanus glandula and its ecological and biogeographical impact.Crossref | GoogleScholarGoogle Scholar |

Keane, R. M., and Crawley, M. J. (2002). Exotic plant invasions and the enemy released hypothesis. Trends in Ecology & Evolution 17, 164–170.
Exotic plant invasions and the enemy released hypothesis.Crossref | GoogleScholarGoogle Scholar |

Kohler, K. E., and Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences 32, 1259–1269.
Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology.Crossref | GoogleScholarGoogle Scholar |

Kolar, C. S., and Lodge, D. M. (2001). Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution 16, 199–204.
Progress in invasion biology: predicting invaders.Crossref | GoogleScholarGoogle Scholar |

Laird, M. C., and Griffiths, C. L. (2008). Present distribution and abundance of the introduced barnacle Balanus glandula Darwin in South Africa. African Journal of Marine Science 30, 93–100.
Present distribution and abundance of the introduced barnacle Balanus glandula Darwin in South Africa.Crossref | GoogleScholarGoogle Scholar |

Lefebvre, S., and Dubois, S. (2017). The stony road to understand isotopic enrichment and turnover rates: insight into the metabolic part. Vie et Milieu – Life & Environment 66, 305–314.

Mendez, M. M., Schwindt, E., and Bortolus, A. (2015). Differential benthic community response to increased habitat complexity mediated by an invasive barnacle. Aquatic Ecology 49, 441–452.
Differential benthic community response to increased habitat complexity mediated by an invasive barnacle.Crossref | GoogleScholarGoogle Scholar |

Mitchell, C. E., and Power, A. G. (2003). Release of invasive plants from fungal and viral pathogens. Nature 421, 625–627.
Release of invasive plants from fungal and viral pathogens.Crossref | GoogleScholarGoogle Scholar | 12571594PubMed |

Newman, W. A., and Ross, A. (1976). Revision of the balanomorph barnacles; including a catalogue of the species. Memoirs of the San Diego Society of Natural History 9, 1–108.

Olivier, S., de Paternoster, I. K., and Bastida, R. (1966). Estudios biocenóticos en las costas de Chubut (Argentina). I. Zonación biocenológica de Puerto pardelas (Golfo Nuevo). Boletín del Instituto de Biología Marina 10, 1–74.

Palmer, A. R. (1982). Predation and parallel evolution: recurrent parietal plate reduction in balanomorphs barnacles. Paleobiology 8, 31–44.
Predation and parallel evolution: recurrent parietal plate reduction in balanomorphs barnacles.Crossref | GoogleScholarGoogle Scholar |

Palmer, A. R. (1983). Growth rate as a measure of food value in thaidid gastropods: assumptions and implications for prey morphology and distribution. Journal of Experimental Marine Biology and Ecology 73, 95–124.
Growth rate as a measure of food value in thaidid gastropods: assumptions and implications for prey morphology and distribution.Crossref | GoogleScholarGoogle Scholar |

Palmer, A. R. (1984). Prey selection by thaidid gastropods: some observational and experimental field tests of foraging models. Oecologia 62, 162–172.
Prey selection by thaidid gastropods: some observational and experimental field tests of foraging models.Crossref | GoogleScholarGoogle Scholar | 28310709PubMed |

Palmer, A. R. (1990). Predator size, prey size, and the scaling of vulnerability: hatchling gastropods vs. barnacles. Ecology 71, 759–775.
Predator size, prey size, and the scaling of vulnerability: hatchling gastropods vs. barnacles.Crossref | GoogleScholarGoogle Scholar |

Parnell, A., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One 5, e9672.
Source partitioning using stable isotopes: coping with too much variation.Crossref | GoogleScholarGoogle Scholar | 20300637PubMed |

Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13, 131–144.
The measurement of diversity in different types of biological collections.Crossref | GoogleScholarGoogle Scholar |

Pio, M. J. (2010). Anatomía e histología del órgano perforador accesorio (ABO) del gasterópodo Trophon geversianus (Mollusca: Muricidae). B.Sc. Thesis, Universidad de la Cámara Argentina de Comercio y Servicios, Buenos Aires, Argentina.

Raffo, M. P., Lo Russo, V., and Schwindt, E. (2014). Introduced and native species on rocky shore macroalgal assemblages: zonation patterns, composition and diversity. Aquatic Botany 112, 57–65.
Introduced and native species on rocky shore macroalgal assemblages: zonation patterns, composition and diversity.Crossref | GoogleScholarGoogle Scholar |

Rashidul Alam, A. K. M., and Noda, T. (2016). An experimental evaluation of the direct and indirect effects of endemic seaweeds, barnacles, and invertebrate predators on the abundance of the introduced rocky intertidal barnacle Balanus glandula. Population Ecology 58, 507–514.
An experimental evaluation of the direct and indirect effects of endemic seaweeds, barnacles, and invertebrate predators on the abundance of the introduced rocky intertidal barnacle Balanus glandula.Crossref | GoogleScholarGoogle Scholar |

Rechimont, M. E., Galván, D. E., Sueiro, M. C., Casas, G., Piriz, M. L., Diez, M. E., Primost, M., Zabala, M. S., Márquez, F., Brogger, M., Alfaya, J. E. F., and Bigatti, G. (2013). Benthic diversity and assemblage structure of a north Patagonian rocky shore: a monitoring legacy of the NaGISA Project. Journal of the Marine Biological Association of the United Kingdom 93, 2049–2058.
Benthic diversity and assemblage structure of a north Patagonian rocky shore: a monitoring legacy of the NaGISA Project.Crossref | GoogleScholarGoogle Scholar |

Riccialdelli, L., Newsome, S. D., Fogel, M. L., and Fernández, D. A. (2017). Trophic interactions and food web structure of a subantarctic marine food web in the Beagle Channel: Bahía Lapataia, Argentina. Polar Biology 40, 807–821.
Trophic interactions and food web structure of a subantarctic marine food web in the Beagle Channel: Bahía Lapataia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Riera, P. (2010). Trophic plasticity of the gastropod Hydrobia ulvae within an intertidal bay (Roscoff, France): a stable isotope evidence. Journal of Sea Research 63, 78–83.
Trophic plasticity of the gastropod Hydrobia ulvae within an intertidal bay (Roscoff, France): a stable isotope evidence.Crossref | GoogleScholarGoogle Scholar |

Rilov, G., Gasith, A., and Benayahu, Y. (2002). Effect of an exotic prey on the feeding pattern of a predatory snail. Marine Environmental Research 54, 85–98.
Effect of an exotic prey on the feeding pattern of a predatory snail.Crossref | GoogleScholarGoogle Scholar | 12148946PubMed |

Sanford, E., and Swezey, D. S. (2008). Response of predatory snails to a novel prey following the geographic range expansion of an intertidal barnacle. Journal of Experimental Marine Biology and Ecology 354, 220–230.
Response of predatory snails to a novel prey following the geographic range expansion of an intertidal barnacle.Crossref | GoogleScholarGoogle Scholar |

Scharf, F. S., Juanes, F., and Sutherland, M. (1998). Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79, 448–460.
Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques.Crossref | GoogleScholarGoogle Scholar |

Schultheis, E. H., Berardi, A. E., and Lau, J. A. (2015). No release for the wicked: enemy release is dynamic and not associated with invasiveness. Ecology 96, 2446–2457.
No release for the wicked: enemy release is dynamic and not associated with invasiveness.Crossref | GoogleScholarGoogle Scholar | 26594701PubMed |

Schwindt, E. (2007). The invasion of the acorn barnacle Balanus glandula in the south-western Atlantic 40 years later. Journal of the Marine Biological Association of the United Kingdom 87, 1219–1225.
The invasion of the acorn barnacle Balanus glandula in the south-western Atlantic 40 years later.Crossref | GoogleScholarGoogle Scholar |

Shea, K., and Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution 17, 170–176.
Community ecology theory as a framework for biological invasions.Crossref | GoogleScholarGoogle Scholar |

Shinen, J. S., Morgan, S. G., and Chan, A. L. (2009). Invasion resistance on rocky shores: direct and indirect effects of three native predators on an exotic and a native prey species. Marine Ecology Progress Series 378, 47–54.
Invasion resistance on rocky shores: direct and indirect effects of three native predators on an exotic and a native prey species.Crossref | GoogleScholarGoogle Scholar |

Smith, J. A., Mazumder, D., Suthers, I. M., and Taylor, M. D. (2013). To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4, 612–618.
To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons.Crossref | GoogleScholarGoogle Scholar |

Somero, G. N. (2002). Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integrative and Comparative Biology 42, 780–789.
Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living.Crossref | GoogleScholarGoogle Scholar | 21708776PubMed |

Spivak, E. D., and L’Hoste, S. G. (1976). ‘Presencia de cuatro especies de Balanus en la costa de la Provincia de Buenos Aires. Distribución y aspectos ecológicos.’ (E. D. Spivak and S. G. L’Hoste: Mar del Plata, Argentina.)

Tirasin, E. M., and Jorgensen, T. (1999). An evaluation of the precision of diet description. Marine Ecology Progress Series 182, 243–252.
An evaluation of the precision of diet description.Crossref | GoogleScholarGoogle Scholar |

Tran, T. N. Q., Jackson, M. C., Sheath, D., Verreycken, H., and Britton, J. R. (2015). Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies. Journal of Animal Ecology 84, 1071–1080.
Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies.Crossref | GoogleScholarGoogle Scholar |

Turner, T. F., Collyer, M. L., and Krabbenhoft, T. J. (2010). A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91, 2227–2233.
A general hypothesis-testing framework for stable isotope ratios in ecological studies.Crossref | GoogleScholarGoogle Scholar | 20836444PubMed |

Vallarino, E. A., and Elías, R. (1997). The dynamics of introduced Balanus glandula population in the Southwestern Atlantic rocky shores. The consequences on the intertidal community. Marine Ecology (Berlin) 18, 319–335.
The dynamics of introduced Balanus glandula population in the Southwestern Atlantic rocky shores. The consequences on the intertidal community.Crossref | GoogleScholarGoogle Scholar |

Vanderklift, M. A., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 12802678PubMed |

Veiga, P., Rubal, M., Arenas, F., Incera, M., Olabarria, C., and Sousa-Pinto, I. (2011). Does Carcinus maenas facilitate the invasion of Xenostrobus securis? Journal of Experimental Marine Biology and Ecology 406, 14–20.
Does Carcinus maenas facilitate the invasion of Xenostrobus securis?Crossref | GoogleScholarGoogle Scholar |

Wieters, E. A., and Navarrete, S. A. (1998). Spatial variability in prey preferences of the intertidal whelks Nucella canaliculata and Nucella emarginata. Journal of Experimental Marine Biology and Ecology 222, 133–148.
Spatial variability in prey preferences of the intertidal whelks Nucella canaliculata and Nucella emarginata.Crossref | GoogleScholarGoogle Scholar |

Zabala, S., Bigatti, G., Botto, F., Iribarne, O. O., and Galván, D. E. (2013). Trophic relationships between a Patagonian gastropod and its epibiotic anemone revealed by using stable isotopes and direct observations. Marine Biology 160, 909–919.
Trophic relationships between a Patagonian gastropod and its epibiotic anemone revealed by using stable isotopes and direct observations.Crossref | GoogleScholarGoogle Scholar |

Zar, J. H. (1999). ‘Biostatistical Analysis.’ (Pearson Education India: Chennai, India.)