Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Dietary composition of endangered seahorses determined by stable isotope analysis

S. Valladares A C , D. X. Soto B and M. Planas A
+ Author Affiliations
- Author Affiliations

A Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.

B Environment Canada, 11 Innovation Boulevarde, Saskatoon, SK, S7N 3H5, Canada.

C Corresponding author. Email: svallalago@gmail.com

Marine and Freshwater Research 68(5) 831-839 https://doi.org/10.1071/MF16013
Submitted: 12 January 2016  Accepted: 25 May 2016   Published: 18 July 2016

Abstract

The lack of integrated measures for assessing the feeding ecology of seahorses may restrict the effectiveness of conservation actions on wild populations of worldwide threatened seahorse species. Identifying dietary sources will allow researchers to determine their degree of vulnerability to environmental changes, redefine their conservation status and apply appropriate management strategies. The resource use of the seahorse Hippocampus guttulatus inhabiting coastal waters of Galicia (north-western Iberian Peninsula) was assessed for three populations and 2 years using stable isotope mixing models. The Bayesian mixing model (MixSIAR) estimated the relative contributions of the dietary sources to the seahorse diet and revealed that Caprellidea were the primary source, followed by Gammaridea and Caridea. Mysidae and Annelida represented the less dominant prey. This prey preference can be explained by the foraging behaviour of seahorses. Different contributions of Gammaridea and Caridea to the diet were found among sites, indicating different habitat characteristics and hence different habitat use by seahorses within each site. In addition, differences were encountered among sexes. Caprellidea was the dominant prey for females, whereas Gammaridea was the dominant prey for males. The findings of the present study will contribute to the knowledge of feeding patterns of H. guttulatus, providing relevant data for conservation of this endangered species.

Additional keywords: conservation, fish, marine.


References

Baillie, J., and Groombridge, B. (Eds) (1996). ‘IUCN Red List of Threatened Animals.’ (International Union for the Conservation of Nature: Gland, Switzerland.)

Blanco, A., and Planas, M. (2015). Mouth growth and prey selection in juveniles of the European long-snouted seahorse, Hippocampus guttulatus. Journal of the World Aquaculture Society 46, 596–607.
Mouth growth and prey selection in juveniles of the European long-snouted seahorse, Hippocampus guttulatus.Crossref | GoogleScholarGoogle Scholar |

Cabana, G., and Rasmussen, J. B. (1996). Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93, 10844–10847.
Comparison of aquatic food chains using nitrogen isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVOlu70%3D&md5=8861d4ea0731f63ae2fcabc425671444CAS | 8855268PubMed |

Caldwell, I. R., and Vincent, A. C. J. (2012). Revisiting two sympatric seahorse species: apparent decline in the absence of exploitation. Aquatic Conservation: Marine and Freshwater Ecosystems 22, 427–435.
Revisiting two sympatric seahorse species: apparent decline in the absence of exploitation.Crossref | GoogleScholarGoogle Scholar |

Castro, A. L. D., Diniz, A. D., Martins, I. Z., Vendel, A. L., De Oliveira, T. P. R., and Rosa, I. M. D. (2008). Assessing diet composition of seahorses in the wild using a non destructive method: Hippocampus reidi (Teleostei: Syngnathidae) as a study case. Neotropical Ichthyology 6, 637–644.
Assessing diet composition of seahorses in the wild using a non destructive method: Hippocampus reidi (Teleostei: Syngnathidae) as a study case.Crossref | GoogleScholarGoogle Scholar |

Corse, E., Valladares, S., Chamorro, A., Planas, M., and Pintado, J. (2015). A method for diet analysis in the long snouted seahorse Hippocampus guttulatus based on prey 18SrDNA amplification in faeces. Aquaculture Nutrition 21, 528–540.
A method for diet analysis in the long snouted seahorse Hippocampus guttulatus based on prey 18SrDNA amplification in faeces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVykt7vF&md5=2c248f0fbe5fa04a72fdacd5db6eb690CAS |

Curtis, J. M. R., and Vincent, A. C. J. (2005). Distribution of sympatric seahorse species along a gradient of habitat complexity in a seagrass-dominated community. Marine Ecology Progress Series 291, 81–91.
Distribution of sympatric seahorse species along a gradient of habitat complexity in a seagrass-dominated community.Crossref | GoogleScholarGoogle Scholar |

Curtis, J. M. R., and Vincent, A. C. J. (2006). Life history of an unusual marine fish: survival, growth and movement patterns of Hippocampus guttulatus (Cuvier 1829). Journal of Fish Biology 68, 707–733.
Life history of an unusual marine fish: survival, growth and movement patterns of Hippocampus guttulatus (Cuvier 1829).Crossref | GoogleScholarGoogle Scholar |

d’Entremont, J. (2002). Sex-related differences in feeding behaviour and diet in Hippocampus guttulatus. B.Sc. Thesis, McGill University, Montreal, Canada.

DeNiro, M. J., and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495–506.
Influence of diet on the distribution of carbon isotopes in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXls1WrsbY%3D&md5=260fbfb17f7afb643cef228fb5ec713dCAS |

DeNiro, M. J., and Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351.
Influence of diet on the distribution of nitrogen isotopes in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVGmtLw%3D&md5=2167e1f40c638478192ca078511555f3CAS |

Foster, S. J., and Vincent, A. C. J. (2004). Life history and ecology of seahorses: implications for conservation and management. Journal of Fish Biology 65, 1–61.
Life history and ecology of seahorses: implications for conservation and management.Crossref | GoogleScholarGoogle Scholar |

França, S., Vasconcelos, R. P., Tanner, S., Máguas, C., Costa, M. J., and Cabral, H. N. (2011). Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: a stable isotope approach. Marine Environmental Research 72, 204–215.
Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: a stable isotope approach.Crossref | GoogleScholarGoogle Scholar | 21958908PubMed |

Fredriksen, S. (2003). Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Marine Ecology Progress Series 260, 71–81.
Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1aksw%3D%3D&md5=fb8f32b5b57efa1dfad1050964043e6eCAS |

Fry, B. (1988). Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnology and Oceanography 33, 1182–1190.
Food web structure on Georges Bank from stable C, N and S isotopic compositions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVCktg%3D%3D&md5=f720501ec9d42248179eed7bcfa33b41CAS |

Galván, D. E., Sweeting, C. J., and Polunin, N. V. C. (2012). Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169, 1083–1093.
Methodological uncertainty in resource mixing models for generalist fishes.Crossref | GoogleScholarGoogle Scholar | 22349753PubMed |

Gestoso, L. (2014). Variación temporal de la macrofauna bentónica en praderas de Zostera marina L. de la ensenada de San Simón (Galicia). Ph.D. Thesis, University of Vigo, Spain.

Gurkan, S., Taskavak, E., Sever, T. M., and Akalin, S. (2011). Gut contents of two European seahorses Hippocampus hippocampus and Hippocampus guttulatus in the Aegean Sea, coasts of Turkey. Pakistan Journal of Zoology 43, 1197–1201.

Hayden, B., Soto, D. X., Jardine, T. D., Graham, B. S., Cunjak, R. A., Romakkaniemi, A., and Linnansaari, T. (2015). Small tails tell tall tales – intra-individual variation in the stable isotope values of fish fin. PLoS One 10, e0145154.
Small tails tell tall tales – intra-individual variation in the stable isotope values of fish fin.Crossref | GoogleScholarGoogle Scholar | 26670464PubMed |

Hobson, K. A., and Welch, H. E. (1992). Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84, 9–18.
Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFGitQ%3D%3D&md5=b39a70d5d19235dc1f11ccfcd5bddabfCAS |

Hobson, K. A., Ambrose, W. G., and Renaud, P. E. (1995). Sources of primary production, benthic–pelagic coupling, and trophic relationships within the Northeast Water polynya: insights from δ13C and δ15N analysis. Marine Ecology Progress Series 128, 1–10.
Sources of primary production, benthic–pelagic coupling, and trophic relationships within the Northeast Water polynya: insights from δ13C and δ15N analysis.Crossref | GoogleScholarGoogle Scholar |

Hobson, K. A., Fisk, A., Karnovsky, N., Holst, M., Gagnone, J. M., and Fortier, M. (2002). A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-sea Research. Part II, Topical Studies in Oceanography 49, 5131–5150.
A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Cgs7s%3D&md5=dce8678d8fcb658c63d69748faf40e31CAS |

Jardine, T. D., Hunt, R. J., Pusey, B. J., and Bunn, S. E. (2011). A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes. Marine and Freshwater Research 62, 83–90.
A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFGmsQ%3D%3D&md5=139d41b02f5c59bb8a253dc1957d264bCAS |

Kelly, M. H., Hagar, W. G., Jardine, T. D., and Cunjak, R. A. (2006). Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue. North American Journal of Fisheries Management 26, 921–925.
Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue.Crossref | GoogleScholarGoogle Scholar |

Kendrick, A. J., and Hyndes, G. A. (2005). Variations in the dietary compositions of morphologically diverse syngnathid fishes. Environmental Biology of Fishes 72, 415–427.
Variations in the dietary compositions of morphologically diverse syngnathid fishes.Crossref | GoogleScholarGoogle Scholar |

Kitsos, M. S., Tzomos, T. H., Anagnostopoulou, L., and Koukouras, A. (2008). Diet composition of the seahorses, Hippocampus guttulatus Cuvier 1829 and Hippocampus hippocampus (L., 1758) (Teleostei, Syngnathidae) in the Aegean Sea. Journal of Fish Biology 72, 1259–1267.
Diet composition of the seahorses, Hippocampus guttulatus Cuvier 1829 and Hippocampus hippocampus (L., 1758) (Teleostei, Syngnathidae) in the Aegean Sea.Crossref | GoogleScholarGoogle Scholar |

Lourie, S. A., Vincent, A. C. J., and Hall, H. J. (1999). ‘Seahorses: an Identification Guide to the World’s Species and Their Conservation.’ (Project Seahorse: London, UK.)

Melville, J. A., and Connolly, R. M. (2003). Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136, 499–507.
Spatial analysis of stable isotope data to determine primary sources of nutrition for fish.Crossref | GoogleScholarGoogle Scholar |

Moore, J. W., and Semmens, B. X. (2008). Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11, 470–480.
Incorporating uncertainty and prior information into stable isotope mixing models.Crossref | GoogleScholarGoogle Scholar | 18294213PubMed |

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One 5, e9672.
Source partitioning using stable isotopes: coping with too much variation.Crossref | GoogleScholarGoogle Scholar | 20300637PubMed |

Phillips, D. L., and Gregg, J. W. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269.
Source partitioning using stable isotopes: coping with too many sources.Crossref | GoogleScholarGoogle Scholar | 12759813PubMed |

Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., Semmens, B. X., and Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92, 823–835.
Best practices for use of stable isotope mixing models in food-web studies.Crossref | GoogleScholarGoogle Scholar |

Planas, M., Chamorro, A., Quintas, P., and Vilar, A. (2008). Establishment and maintenance of threatened long-snouted seahorse, Hippocampus guttulatus, broodstock in captivity. Aquaculture 283, 19–28.
Establishment and maintenance of threatened long-snouted seahorse, Hippocampus guttulatus, broodstock in captivity.Crossref | GoogleScholarGoogle Scholar |

Planas, M., Quintas, P., Chamorro, A., and Silva, C. (2010). Female maturation, egg characteristics and fatty acids profile in the European long-snouted seahorse Hippocampus guttulatus. Animal Reproduction Science 122, 66–73.
Female maturation, egg characteristics and fatty acids profile in the European long-snouted seahorse Hippocampus guttulatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kqt7nK&md5=fd49510acc36180c14a95e06011edce2CAS | 20727689PubMed |

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718.
Using stable isotopes to estimate trophic position: models, methods, and assumptions.Crossref | GoogleScholarGoogle Scholar |

Sanderson, B. L., Tran, C. D., Coe, H. J., Pelekis, V., Steel, E. A., and Reichert, W. L. (2009). Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes. Transactions of the American Fisheries Society 138, 1166–1177.
Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes.Crossref | GoogleScholarGoogle Scholar |

Smith, J. A., Mazumder, D., Suthers, I. M., and Taylor, M. D. (2013). To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4, 612–618.
To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons.Crossref | GoogleScholarGoogle Scholar |

Stock, B. C., and Semmens, B. X. (2013). MixSIAR GUI user manual (version 1.0.). Available at http://conserver.iugo-cafe.org/user/brice.semmens/MixSIAR [Verified 12 January 2016].

Storero, L. P., and González, R. A. (2008). Feeding habits of the seahorse Hippocampus patagonicus in San Antonio Bay (Patagonia, Argentina). Journal of the Marine Biological Association of the United Kingdom 88, 1503–1508.
Feeding habits of the seahorse Hippocampus patagonicus in San Antonio Bay (Patagonia, Argentina).Crossref | GoogleScholarGoogle Scholar |

Sweeting, C. J., Barry, J., Barnes, C., Polunin, N. V. C., and Jennings, S. (2007a). Effects of body size and environment on diet-tissue δ15N fractionation in fishes. Journal of Experimental Marine Biology and Ecology 340, 1–10.
Effects of body size and environment on diet-tissue δ15N fractionation in fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgsbfL&md5=83238653bf5c08bace22296dc61ac503CAS |

Sweeting, C. J., Barry, J. T., Polunin, N. V. C., and Jennings, S. (2007b). Effects of body size and environment on diet-tissue δ13C fractionation in fishes. Journal of Experimental Marine Biology and Ecology 352, 165–176.
Effects of body size and environment on diet-tissue δ13C fractionation in fishes.Crossref | GoogleScholarGoogle Scholar |

Teixeira, R. L., and Musick, J. A. (2001). Reproduction and food habits of the lined seahorse, Hippocampus erectus (Teleostei: Syngnathidae) of Chesapeake Bay, Virginia. Revista Brasileira de Biologia 61, 79–90.
Reproduction and food habits of the lined seahorse, Hippocampus erectus (Teleostei: Syngnathidae) of Chesapeake Bay, Virginia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3oslertw%3D%3D&md5=228a5324e43bfa639bdadaa95b32b4a3CAS |

Tieszen, L. L., Boutton, T. W., Tesdahl, K. G., and Slade, N. A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57, 32–37.
Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet.Crossref | GoogleScholarGoogle Scholar |

Tipton, K., and Bell, S. S. (1988). Foraging patterns of two syngnathidae fishes: importance of harpacticoid copepods. Marine Ecology Progress Series 47, 31–43.
Foraging patterns of two syngnathidae fishes: importance of harpacticoid copepods.Crossref | GoogleScholarGoogle Scholar |

Valladares, S., and Planas, M. (2012). Non-lethal dorsal fin sampling for stable isotope analysis in seahorses. Aquatic Ecology 46, 363–370.
Non-lethal dorsal fin sampling for stable isotope analysis in seahorses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSltrbJ&md5=17218209cc67e45adbb2c1b6a0acc418CAS |

Vázquez, D. P., and Simberloff, D. (2002). Ecological specialization and susceptibility to disturbance: conjectures and refutations. American Naturalist 159, 606–623.
Ecological specialization and susceptibility to disturbance: conjectures and refutations.Crossref | GoogleScholarGoogle Scholar | 18707385PubMed |

Vincent, A. C. J. (1996). ‘The International Trade in Seahorses.’ (TRAFFIC International: Cambridge, UK.)

Vizzini, S., and Mazzola, A. (2009). Stable isotopes and trophic positions of littoral fishes from a Mediterranean marine protected area. Environmental Biology of Fishes 84, 13–25.
Stable isotopes and trophic positions of littoral fishes from a Mediterranean marine protected area.Crossref | GoogleScholarGoogle Scholar |

Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., and Polunin, N. V. C. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biology 12, 2220–2234.
Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?Crossref | GoogleScholarGoogle Scholar |

Woodall, L. (2012). Hippocampus guttulatus (Long-snouted Seahorse, Seahorse). In ‘The IUCN Red List of Threatened Species’, ver. 2012. (International Union for Conservation of Nature and Natural Resources.) Available at http://www.iucnredlist.org/details/41006/0 [Verified 6 June 2016].

Woods, C. M. C. (2002). Diet of the seahorse Hippocampus abdominalis. New Zealand Journal of Marine and Freshwater Research 36, 655–660.
Diet of the seahorse Hippocampus abdominalis.Crossref | GoogleScholarGoogle Scholar |