Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Assimilation of organic matter by two benthic consumers across gradients of latitude and nutrient enrichment

Andrea Nicastro A B , Ka-Man Lee A and Melanie J. Bishop A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

B Corresponding author. Email: nicastro.bio@gmail.com

Marine and Freshwater Research 68(5) 840-850 https://doi.org/10.1071/MF15436
Submitted: 19 November 2015  Accepted: 4 May 2016   Published: 8 July 2016

Abstract

In modifying the traits of producers, coastal development and latitude may influence the assimilation of organic matter resources by consumers. The aim of the present study was to assess spatial variation across gradients of latitude and diffuse nitrogen loading in: (1) the N content of the seagrass Zostera muelleri and the mangrove Avicennia marina; and (2) the ultimate organic matter sources (inferred from δ15N and δ13C signatures) of the detritivorous mud whelk Pyrazus ebeninus and the predatory polychaete Nephtys australiensis. It was hypothesised that the organic matter sources of each of the two consumers would vary spatially, following patterns of spatial variation in the N content of primary producers. Sampling in 12 estuaries of New South Wales, Australia, spanning 7° of latitude and variable nutrient loading revealed that the nitrogen content of Z. muelleri was negatively correlated with latitude and nitrogen loading, but the nitrogen content of A. marina leaves followed only latitude. Of the four organic matter sources considered by the present study, Z. muelleri was consistently the main source passed through the trophic chain to the detritivore P. ebeninus and the predator N. australiensis. Nevertheless, the proportionate contribution of Z. muelleri and microphytobenthos to the carbon sources of N. australiensis varied with latitude, the former negatively and the latter positively. These relationships suggest that latitude may influence carbon sources of consumers by modifying producer physicochemical traits.

Additional keywords: carbon cycling, eutrophication, leaf traits, mixing model, producer palatability, trophodynamics.


References

Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439–449.
Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship.Crossref | GoogleScholarGoogle Scholar |

Ågren, G. I. (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics 39, 153–170.
Stoichiometry and nutrition of plant growth in natural communities.Crossref | GoogleScholarGoogle Scholar |

Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., and Lavorel, S. (2010a). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology 24, 1192–1201.
A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits.Crossref | GoogleScholarGoogle Scholar |

Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., and Lavorel, S. (2010b). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98, 604–613.
Intraspecific functional variability: extent, structure and sources of variation.Crossref | GoogleScholarGoogle Scholar |

Alfaro, A. C., Thomas, F., Sergent, L., and Duxbury, M. (2006). Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science 70, 271–286.
Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods.’ (PRIMER-E Ltd: Plymouth, UK.)

Apostolaki, E. T., Marba, N., Holmer, M., and Karakassis, I. (2009). Fish farming impact on decomposition of Posidonia oceanica litter. Journal of Experimental Marine Biology and Ecology 369, 58–64.
Fish farming impact on decomposition of Posidonia oceanica litter.Crossref | GoogleScholarGoogle Scholar |

Baird, M. E., and Middleton, J. H. (2004). On relating physical limits to the carbon : nitrogen ratio of unicellular algae and benthic plants. Journal of Marine Systems 49, 169–175.
On relating physical limits to the carbon : nitrogen ratio of unicellular algae and benthic plants.Crossref | GoogleScholarGoogle Scholar |

Bishop, M. J., and Kelaher, B. P. (2007). Impacts of detrital enrichment on estuarine assemblages: disentangling effects of frequency and intensity of disturbance. Marine Ecology Progress Series 341, 25–36.
Impacts of detrital enrichment on estuarine assemblages: disentangling effects of frequency and intensity of disturbance.Crossref | GoogleScholarGoogle Scholar |

Bishop, M. J., and Kelaher, B. P. (2008). Non-additive, identity-dependent effects of detrital species mixing on soft-sediment communities. Oikos 117, 531–542.
Non-additive, identity-dependent effects of detrital species mixing on soft-sediment communities.Crossref | GoogleScholarGoogle Scholar |

Bishop, M. J., and Kelaher, B. P. (2013). Context-specific effects of the identity of detrital mixtures on invertebrate communities. Ecology and Evolution 3, 3986–3999.
Context-specific effects of the identity of detrital mixtures on invertebrate communities.Crossref | GoogleScholarGoogle Scholar | 24198954PubMed |

Bishop, M. J., Kelaher, B. P., Alquezar, R., York, P. H., Ralph, P. J., and Skilbeck, C. G. (2007). Trophic cul-de-sac, Pyrazus ebeninus, limits trophic transfer through an estuarine detritus-based food web. Oikos 116, 427–438.
Trophic cul-de-sac, Pyrazus ebeninus, limits trophic transfer through an estuarine detritus-based food web.Crossref | GoogleScholarGoogle Scholar |

Bishop, M. J., Coleman, M. A., and Kelaher, B. P. (2010). Cross-habitat impacts of species decline: response of estuarine sediment communities to changing detrital resources. Oecologia 163, 517–525.
Cross-habitat impacts of species decline: response of estuarine sediment communities to changing detrital resources.Crossref | GoogleScholarGoogle Scholar | 20063171PubMed |

Cebrián, J. (1999). Patterns in the fate of production in plant communities. American Naturalist 154, 449–468.
Patterns in the fate of production in plant communities.Crossref | GoogleScholarGoogle Scholar | 10523491PubMed |

Cebrián, J., and Lartigue, J. (2004). Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs 74, 237–259.
Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G., and Roberts, D. E. (2004). Use of seagrass wrack in restoring disturbed Australian saltmarshes. Ecological Management & Restoration 5, 183–190.
Use of seagrass wrack in restoring disturbed Australian saltmarshes.Crossref | GoogleScholarGoogle Scholar |

Christianen, M. J. A., Govers, L. L., Bouma, T. J., Kiswara, W., Roelofs, J. G. M., Lamers, L. P. M., and van Katwijk, M. M. (2012). Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology 100, 546–560.
Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1GktrY%3D&md5=d0607c93e7d89a48153bb8f26c9205daCAS |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6.’ (PRIMER-E Ltd: Plymouth, UK.)

Cole, M. L., Kroeger, K. D., McClelland, J. W., and Valiela, I. (2006). Effects of watershed land use on nitrogen concentrations and δ15N in groundwater. Biogeochemistry 77, 199–215.
Effects of watershed land use on nitrogen concentrations and δ15N in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFClu7c%3D&md5=9ec801b3a4f7420a8fda2a3772b9c249CAS |

Connolly, R. M., Gorman, D., and Guest, M. A. (2005). Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144, 684–691.
Movement of carbon among estuarine habitats and its assimilation by invertebrates.Crossref | GoogleScholarGoogle Scholar | 16001216PubMed |

Crawley, K. R., Hyndes, G. A., Vanderklift, M. A., Revill, A. T., and Nichols, P. D. (2009). Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Marine Ecology Progress Series 376, 33–44.
Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment.Crossref | GoogleScholarGoogle Scholar |

Creese, R. G, Glasby, T. M., West, G., and Gallen, C. (2009). Mapping the habitats of NSW estuaries. Final report, Series 113, Industry & Investment NSW Fisheries, Port Stephens, NSW.

Deegan, L. A., and Garritt, R. H. (1997). Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147, 31–47.
Evidence for spatial variability in estuarine food webs.Crossref | GoogleScholarGoogle Scholar |

Dubois, S., Jean-Louis, B., Bertrand, B., and Lefebvre, S. (2007). Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. Journal of Experimental Marine Biology and Ecology 351, 121–128.
Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Fox, S. E., Teichberg, M., Olsen, Y. S., Heffner, L., and Valiela, I. (2009). Restructuring of benthic communities in eutrophic estuaries: lower abundance of prey leads to trophic shifts from omnivory to grazing. Marine Ecology Progress Series 380, 43–57.
Restructuring of benthic communities in eutrophic estuaries: lower abundance of prey leads to trophic shifts from omnivory to grazing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtV2itL0%3D&md5=ef97768fa9394ef7b8e8686f8b81cf62CAS |

Fry, B. (2006). ‘Stable Isotope Ecology.’ (Springer: New York.)

Gannes, L. Z., Obrien, D. M., and delRio, C. M. (1997). Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78, 1271–1276.
Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments.Crossref | GoogleScholarGoogle Scholar |

Guest, M. A., and Connolly, R. M. (2006). Movement of carbon among estuarine habitats: the influence of saltmarsh patch size. Marine Ecology Progress Series 310, 15–24.
Movement of carbon among estuarine habitats: the influence of saltmarsh patch size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFSrsb0%3D&md5=734635530184db0db856087f01f1cfc9CAS |

Guest, M. A., Connolly, R. M., and Loneragan, N. R. (2004). Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres. Marine Ecology Progress Series 278, 27–34.
Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWqur3E&md5=fa74d0eeaadb4d9e01efc8d6ac48a409CAS |

Güsewell, S. (2004). N : P ratios in terrestrial plants: variation and functional significance. New Phytologist 164, 243–266.
N : P ratios in terrestrial plants: variation and functional significance.Crossref | GoogleScholarGoogle Scholar |

Hauxwell, J., Cebrián, J., and Valiela, I. (2003). Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series 247, 59–73.
Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Wqurk%3D&md5=6006dc5936570c35916905d6db6393a5CAS |

Hulshof, C. M., Violle, C., Spasojevic, M. J., Mcgill, B., Damschen, E., Harrison, S., and Enquist, B. J. (2013). Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science 24, 921–931.
Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude.Crossref | GoogleScholarGoogle Scholar |

Kellman, L. M., and Hillaire-Marcel, C. (2003). Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture, Ecosystems & Environment 95, 87–102.
Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1KmsL0%3D&md5=40a5deda0a283409ac4f4e21ce456615CAS |

Kerkhoff, A. J., Enquist, B. J., Elser, J. J., and Fagan, W. F. (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography 14, 585–598.
Plant allometry, stoichiometry and the temperature-dependence of primary productivity.Crossref | GoogleScholarGoogle Scholar |

Kreitler, C. W., and Jones, D. C. (1975). Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas. Ground Water 13, 53–62.
Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas.Crossref | GoogleScholarGoogle Scholar |

Lee, K. S. (2004). Development of indicators for coastal and estuarine eutrophication using morphological characteristics and tissue N content of eelgrass, Zostera marina. Algae – Korean Phycological Society 19, 129–137.
Development of indicators for coastal and estuarine eutrophication using morphological characteristics and tissue N content of eelgrass, Zostera marina.Crossref | GoogleScholarGoogle Scholar |

Lorenzen, C. J. (1967). Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12, 343–346.
Determination of chlorophyll and pheo-pigments: spectrophotometric equations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovFOqsQ%3D%3D&md5=503aeda84207892d15077a99c7d9deaeCAS |

Lovelock, C. E., Feller, I. C., Ball, M. C., Ellis, J., and Sorrell, B. (2007). Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecology Letters 10, 1154–1163.
Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snmtlCrtA%3D%3D&md5=7c8660dbc5d7374c38d8efdefa993059CAS | 17927772PubMed |

Martinetto, P., Teichberg, M., and Valiela, I. (2006). Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Walquoit Bay, Massachusetts, USA. Marine Ecology Progress Series 307, 37–48.
Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Walquoit Bay, Massachusetts, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlektLs%3D&md5=cedccf9633b147bace561426374c933aCAS |

McArdle, B. H., and Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297.
Fitting multivariate models to community data: a comment on distance-based redundancy analysis.Crossref | GoogleScholarGoogle Scholar |

McClelland, J. W., and Valiela, I. (1998). Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43, 577–585.
Linking nitrogen in estuarine producers to land-derived sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFWqsb8%3D&md5=8016ad7f4c35c1ef867c5e8c1c1024fdCAS |

McClelland, J. W., Valiela, I., and Michener, R. H. (1997). Nitrogen stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42, 930–937.
Nitrogen stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1yi&md5=d220f785a0ef25099149c610619f8a55CAS |

McGlathery, K. J. (2001). Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. Journal of Phycology 37, 453–456.
Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters.Crossref | GoogleScholarGoogle Scholar |

McRoy, C. P., and Goering, J. J. (1974). The influence of ice on the primary productivity of the Bering Sea. In ‘Oceanography of the Bering Sea with Emphasis on Renewable Resources’. (Eds D. W. Hood and E. J. Kelly.) pp. 403–421. (Institute of Marine Science, University of Alaska: Fairbanks, AK.)

Minagawa, M., and Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140.
Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlOms7w%3D&md5=df5b4bddc3fdbe395d263acb5d4ccd51CAS |

Moore, J. C., Eric, L. B., David, C. C., Peter, C. R., Quan, D., Alan, H., Nancy Collins, J., Kevin, S. M., Kim, M., Peter, J. M., Knute, N., Amy, D. R., David, M. P., John, L. S., Kate, M. S., Michael, J. V., and Diana, H. W. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters 7, 584–600.
Detritus, trophic dynamics and biodiversity.Crossref | GoogleScholarGoogle Scholar |

Morand, P., and Briand, X. (1996). Excessive growth of macroalgae: a symptom of environmental disturbance. Botanica Marina 39, 491–516.
Excessive growth of macroalgae: a symptom of environmental disturbance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVSit7s%3D&md5=c4b70726416897067299208f5bcc3739CAS |

Nestler, A., Berglund, M., Accoe, F., Duta, S., Xue, D. M., Boeckx, P., and Taylor, P. (2011). Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research International 18, 519–533.
Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFais7w%3D&md5=e41c5ae1cebee63caaa2d4f2bc7013d5CAS | 21246297PubMed |

Nicastro, A., and Bishop, M. J. (2013). Weak and habitat-dependent effects of nutrient pollution on macrofaunal communities of southeast Australian estuaries. PLoS One 8, e65706.
Weak and habitat-dependent effects of nutrient pollution on macrofaunal communities of southeast Australian estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCms7%2FM&md5=38100bde688e7dc4d00135e5a4b9eeeeCAS | 23799037PubMed |

Olsen, Y. S., Fox, S. E., Teichberg, M., Otter, M., and Valiela, I. (2011). δ15N and δ13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass. Marine Ecology Progress Series 421, 83–96.
δ15N and δ13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass.Crossref | GoogleScholarGoogle Scholar |

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
A global crisis for seagrass ecosystems.Crossref | GoogleScholarGoogle Scholar |

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One 5, e9672.
Source partitioning using stable isotopes: coping with too much variation.Crossref | GoogleScholarGoogle Scholar | 20300637PubMed |

Peterson, B. J., and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
Stable isotopes in ecosystem studies.Crossref | GoogleScholarGoogle Scholar |

Petrone, K. C. (2010). Catchment export of carbon, nitrogen, and phosphorus across an agro–urban land use gradient, Swan–Canning River system, southwestern Australia. Journal of Geophysical Research. Biogeosciences 115, G01016.

Pitt, K. A., Connolly, R. M., and Maxwell, P. (2009). Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades. Marine Pollution Bulletin 58, 573–580.
Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGqtrw%3D&md5=cfb65904e16fa7230ecb392ccd852790CAS | 19138774PubMed |

Reich, P. B., and Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101, 11001–11006.
Global patterns of plant leaf N and P in relation to temperature and latitude.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVCmt74%3D&md5=754735766287fd0434dac749615710a5CAS | 15213326PubMed |

Roper, T., Creese, B., Scanes, P., Stephens, K., Williams, R., Dela-Cruz, J., Coade, G., Coates, B., and Fraser, M. (2011). Assessing the condition of estuaries and coastal lake ecosystems in NSW. Monitoring, evaluation and reporting program, Technical report series, Office of Environment and Heritage, Sydney.

Rossi, F., Incera, M., Callier, M., and Olabarria, C. (2011). Effects of detrital non-native and native macroalgae on the nitrogen and carbon cycling in intertidal sediments. Marine Biology 158, 2705–2715.
Effects of detrital non-native and native macroalgae on the nitrogen and carbon cycling in intertidal sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFantr7M&md5=a80c58097929b3b2e70dcf970f8c538cCAS |

Scanes, P., Coade, G., Doherty, M., and Hill, R. (2007). Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia. Estuarine, Coastal and Shelf Science 74, 306–319.
Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia.Crossref | GoogleScholarGoogle Scholar |

Short, F. T., and McRoy, C. P. (1984). Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Botanica Marina 27, 547–556.
Nitrogen uptake by leaves and roots of the seagrass Zostera marina L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFSqtg%3D%3D&md5=84fe9c0a6dffd7968aec1d20ecc3ae30CAS |

Short, F. T., and Neckles, H. A. (1999). The effects of global climate change on seagrasses. Aquatic Botany 63, 169–196.
The effects of global climate change on seagrasses.Crossref | GoogleScholarGoogle Scholar |

Short, F. T., Burdick, D. M., and Kaldy, J. E. (1995). Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnology and Oceanography 40, 740–749.
Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina.Crossref | GoogleScholarGoogle Scholar |

Taylor, S. L., Bishop, M. J., Kelaher, B. P., and Glasby, T. M. (2010). Impacts of detritus from the invasive alga Caulerpa taxifolia on a soft sediment community. Marine Ecology Progress Series 420, 73–81.
Impacts of detritus from the invasive alga Caulerpa taxifolia on a soft sediment community.Crossref | GoogleScholarGoogle Scholar |

Terrados, J., and Williams, S. L. (1997). Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Marine Ecology Progress Series 149, 267–277.
Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslWgu7g%3D&md5=7ad64e629d61fbac118ce20b07788da0CAS |

Tewfik, A., Rasmussen, J., and McCann, K. S. (2005). Anthropogenic enrichment alters a marine benthic food web. Ecology 86, 2726–2736.
Anthropogenic enrichment alters a marine benthic food web.Crossref | GoogleScholarGoogle Scholar |

Touchette, B. W., Burkholder, J. M., and Glasgow, H. B. (2003). Variations in eelgrass (Zostera marina L.) morphology and internal nutrient composition as influenced by increased temperature and water column nitrate. Estuaries 26, 142–155.
Variations in eelgrass (Zostera marina L.) morphology and internal nutrient composition as influenced by increased temperature and water column nitrate.Crossref | GoogleScholarGoogle Scholar |

Udy, J. W., and Dennison, W. C. (1997). Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. Journal of Experimental Marine Biology and Ecology 217, 253–277.
Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar |

Vander Zanden, M. J., and Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 2061–2066.
Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12ltA%3D%3D&md5=e94c4c6c4d14eea38723f5dee650a74eCAS |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=781960a04df99038f1e62d36cc6c1758CAS | 19587236PubMed |

Xia, J., and Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist 179, 428–439.
Global response patterns of terrestrial plant species to nitrogen addition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOgtL0%3D&md5=c49711029ee8005a0936ef7f33133d13CAS | 19086179PubMed |