Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Genetic relationships between landlocked and coastal populations of Lycengraulis grossidens (Engraulidae) in south-eastern South America: evidence for a continental colonisation route with secondary transitions to the coastal region

Ana C. G. Mai A C , Lizandra J. Robe B , Luis F. Marins B and João P. Vieira A
+ Author Affiliations
- Author Affiliations

A Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Italia quilômetro 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil.

B Instituto de Ciências Biológicas, FURG, Avenida Italia quilômetro 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil.

C Corresponding author. Email: anacecilia_mai@yahoo.com.br

Marine and Freshwater Research 68(2) 342-351 https://doi.org/10.1071/MF15355
Submitted: 16 September 2015  Accepted: 22 January 2016   Published: 12 April 2016

Abstract

The anchovies of the genus Lycengraulis are the product of an evolutionary transition from a marine to freshwater environment that occurred in South America during the Miocene epoch. Lycengraulis grossidens originated from freshwater lineages and is currently distributed in estuaries and coastal zones. Nevertheless, based on otolith chemistry, there are landlocked individuals in the Uruguay River. The aim of the present study was to investigate the spatiotemporal scenario by which these landlocked individuals reached their current distribution: whether through a north-to-south continental route based on the connection between basins or from the marine environment. To this end, a fragment of the mitochondrial (mt)DNA control region was analysed from individuals collected along freshwater, estuarine and marine environments. We found a significant genetic differentiation between freshwater and coastal (estuarine and marine) populations. Larger haplotype diversities and female effective population size values were found in the coastal population. Nevertheless, the outgroup rooting positioned some Uruguay River haplotypes as hypothetical ancestors in the directed network and as early offshoots in the phylogeny, suggesting the landlocked population as an ancestral lineage. Therefore, the phylogenetic history and biogeography are consistent with a north-to-south continental colonisation route putatively associated with ancient connections between the Amazon and Parana basins followed by new evolutionary transitions to the coastal region associated with Quaternary sea level oscillations.

Additional keywords: anchovies, evolutionary transition, Neotropical fish, Quaternary.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Bamber, R. N., and Henderson, P. A. (1988). Pre-adaptative plasticity in atherinids and the estuarine seat of teleost evolution. Journal of Fish Biology 33, 17–23.
Pre-adaptative plasticity in atherinids and the estuarine seat of teleost evolution.Crossref | GoogleScholarGoogle Scholar |

Bandelt, H.-J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 10331250PubMed |

Beheregaray, L. B., and Levy, J. A. (2000). Population genetics of the silverside Odontesthes argentinensis: evidence for speciation in an estuary of southern Brazi. Copeia 2000, 441–447.
Population genetics of the silverside Odontesthes argentinensis: evidence for speciation in an estuary of southern Brazi.Crossref | GoogleScholarGoogle Scholar |

Beheregaray, L. B., and Sunnucks, P. (2000). Microsatellite loci isolated from Odontesthes argentinensis and the O. perugiae species group and their use in other South American silverside fish. Molecular Ecology 9, 629–631.
Microsatellite loci isolated from Odontesthes argentinensis and the O. perugiae species group and their use in other South American silverside fish.Crossref | GoogleScholarGoogle Scholar | 10792705PubMed |

Beheregaray, L. B., Sunnucks, P., and Briscoe, D. (2002). A rapid fish radiation associated with the last sealevel changes in southern Brazil: the silverside Odontesthes perugiae complex. Proceedings of the Royal Society of London – B. Biological Sciences 269, 65–73.
A rapid fish radiation associated with the last sealevel changes in southern Brazil: the silverside Odontesthes perugiae complex.Crossref | GoogleScholarGoogle Scholar |

Betancur-R, R., Ortí, G., Stein, A. M., Marceniuk, A. P., and Alexander, P. R. (2012). Apparent signal of competition limiting diversification after ecological transitions from marine to freshwater habitats. Ecology Letters 15, 822–830.
Apparent signal of competition limiting diversification after ecological transitions from marine to freshwater habitats.Crossref | GoogleScholarGoogle Scholar | 22672567PubMed |

Bloom, D. D., and Lovejoy, N. R. (2012). Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). Journal of Evolutionary Biology 25, 701–715.
Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae).Crossref | GoogleScholarGoogle Scholar | 22300535PubMed |

Bloom, D. D., and Lovejoy, N. R. (2014). The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies). Proceedings of the Royal Society of London – B. Biological Sciences 281, 20132081.
The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies).Crossref | GoogleScholarGoogle Scholar |

Boeger, W. A., Marteleto, F. M., Zagonel, L., and Braga, M. P. (2015). Tracking the history of an invasion: the freshwater croakers (Teleostei: Sciaenidae) in South America. Zoologica Scripta 44, 250–262.
Tracking the history of an invasion: the freshwater croakers (Teleostei: Sciaenidae) in South America.Crossref | GoogleScholarGoogle Scholar |

Burns, M. D. M., Garcia, A. M., Vieira, J. P., Bemvenuti, M. A., Motta Marques, D. M. L., and Condini, V. (2006). Evidence of habitat fragmentation affecting fish movement between the Patos and Mirim coastal lagoons in southern Brazil. Neotropical Ichthyology 4, 69–72.
Evidence of habitat fragmentation affecting fish movement between the Patos and Mirim coastal lagoons in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Carreño, A. L., Coimbra, J. C., and Carmo, D. A. (1999). Late Cenozoic sea level changes evidenced by ostracodes in the Pelotas Basin, southernmost Brazil. Marine Micropaleontology 37, 117–129.
Late Cenozoic sea level changes evidenced by ostracodes in the Pelotas Basin, southernmost Brazil.Crossref | GoogleScholarGoogle Scholar |

Chapman, B. B., Hulthén, K., Brodersen, J., Nilsson, P. A., Skov, C., Hansson, L.-A., and Brönmark, C. (2012). Partial migration in fishes: causes and consequences. Journal of Fish Biology 81, 456–478.
Partial migration in fishes: causes and consequences.Crossref | GoogleScholarGoogle Scholar | 22803720PubMed |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 11050560PubMed |

Coates, A. G., and Obando, J. A. (1996). The geologic evolution of the Central American Isthmus. In ‘Evolution and Environments in Tropical America’. (Eds J. B. C. Jackson, A. F. Budd, and A. G. Coates.) pp. 21–56. (University of Chicago Press: Chicago, IL.)

Coates, A. G., Mcneill, D. F., Aubry, M.-P., Berggren, W. A., and Collins, L. S. (2005). An introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribbean Journal of Science 41, 374–391.

Cooke, G. M., Chao, N. L., and Beheregaray, L. B. (2012). Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). Journal of Biogeography 39, 724–738.
Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae).Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

DeWoody, J. A., and Avise, J. C. (2000). Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Journal of Fish Biology 56, 461–473.
Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Dupanloup, I., Schneider, S., and Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11, 2571–2581.
A simulated annealing approach to define the genetic structure of populations.Crossref | GoogleScholarGoogle Scholar | 12453240PubMed |

Excoffier, L., and Foll, M. (2011). fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334.
fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios.Crossref | GoogleScholarGoogle Scholar | 21398675PubMed |

Franklin, K. R., and Frankham, R. (1998). How large must populations be to retain evolutionary potential? Animal Conservation 1, 69–70.
How large must populations be to retain evolutionary potential?Crossref | GoogleScholarGoogle Scholar |

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
| 9335623PubMed |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Huang, Z., Xu, X., Tang, J., Zhang, J., Zheng, J., Li, G., and He, J. (2009). Application and primer design of mitochondrial DNA D-loop of freshwater fishes. Acta Scientiarum Naturalium Universitatis Sunyatseni 48, 84–88.

Hubert, N., and Renno, J.-F. (2006). Historical biogeography of South American freshwater fishes. Journal of Biogeography 33, 1414–1436.
Historical biogeography of South American freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Kuhner, M. K. (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22, 768–770.
LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters.Crossref | GoogleScholarGoogle Scholar | 16410317PubMed |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 19346325PubMed |

Loeb, M. V., and Alcântara, A. V. (2013). A new species of Lycengraulis Günther, 1868 (Clupeiformes: Engraulinae) from the Amazon basin, Brazil, with comments on Lycengraulis batesii (Günther, 1868). Zootaxa 3693, 200–206.
A new species of Lycengraulis Günther, 1868 (Clupeiformes: Engraulinae) from the Amazon basin, Brazil, with comments on Lycengraulis batesii (Günther, 1868).Crossref | GoogleScholarGoogle Scholar | 26185844PubMed |

Lovejoy, N. R., Albert, J. S., and Crampton, W. G. R. (2006). Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes. Journal of South American Earth Sciences 21, 5–13.
Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes.Crossref | GoogleScholarGoogle Scholar |

Lundberg, J. G., Sabaj Perez, M. H., Dahdul, W. M., and Aguilera, O. A. (2010). The Amazonian Neogene fish fauna. In ‘Amazonia: Landscape and Species Evolution. A Look into the Past’. (Eds C. Hoorn and F. Wesselingh.) pp. 281–301. (Wiley-Blackwell: Chichester, UK.)

Mai, A. C. G., and Vieira, J. P. (2013). Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae). Biota Neotropica 13, 121–130.
Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae).Crossref | GoogleScholarGoogle Scholar |

Mai, A. C. G., Condini, M. V., Albuquerque, C. Q., Loebmann, D., Saint’Pierre, T. D., Miekeley, N., and Vieira, J. P. (2014). High plasticity in habitat use of Lycengraulis grossidens (Clupeiforme, Engraulididae). Estuarine, Coastal and Shelf Science 141, 17–25.
High plasticity in habitat use of Lycengraulis grossidens (Clupeiforme, Engraulididae).Crossref | GoogleScholarGoogle Scholar |

McDowall, R. M. (2008). Diadromy, history and ecology: a question of scale. Hydrobiologia 602, 5–14.
Diadromy, history and ecology: a question of scale.Crossref | GoogleScholarGoogle Scholar |

Monsch, K. A. (1998). Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 31–50.
Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions.Crossref | GoogleScholarGoogle Scholar |

Nei, M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)

Nizinski, M. S., and Munroe, T. A. (2002). Order Clupeiformes, Engraulididae. In ‘The Living Marine Resources of the Western Central Atlantic’. (Ed. K. E. Carpenter.) pp. 764–794. (FAO: Rome.)

Pamilo, P., and Nei, M. (1988). Relationships between gene trees and species trees. Molecular Biology and Evolution 5, 568–583.
| 3193878PubMed |

Ramos, L. A. (2005). Auto-ecologia de Lycengraulis grossidens (Agassiz, 1829) (Clupeiformes, Engraulididae) em estuários do Rio Grande do Sul e sua pesca na barra do rio Tramandaí, RS, Brasil. Ph.D. Thesis, Universidade Federal do Rio Grande, Rio Grande.

Rocha, L. A., Bass, A. L., Robertson, D. R., and Bowen, B. W. (2002). Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Molecular Ecology 11, 243–251.
Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae).Crossref | GoogleScholarGoogle Scholar | 11856425PubMed |

Rodrigues, R., Schneider, H., Santos, S., Vallinoto, M., Sain-Paul, U., and Sampaio, I. (2008). Low levels of genetic diversity depicted from mitochondrial DNA sequences in a heavily exploited marine fish (Cynoscion acoupa, Sciaenidae) from the Northern coast of Brazil. Genetics and Molecular Biology 31, 487–492.
Low levels of genetic diversity depicted from mitochondrial DNA sequences in a heavily exploited marine fish (Cynoscion acoupa, Sciaenidae) from the Northern coast of Brazil.Crossref | GoogleScholarGoogle Scholar |

Rodrigues, R., Santos, S., Haimovici, M., Saint-Paul, U., Sampaio, I., and Schneider, H. (2014). Mitochondrial DNA reveals population structuring in Macrodon atricauda (Perciformes: Sciaenidae): a study covering the whole geographic distribution of the species in the southwestern Atlantic. Mitochondrial DNA 25, 150–156.
Mitochondrial DNA reveals population structuring in Macrodon atricauda (Perciformes: Sciaenidae): a study covering the whole geographic distribution of the species in the southwestern Atlantic.Crossref | GoogleScholarGoogle Scholar | 23656293PubMed |

Rosenberg, M. S., and Anderson, C. D. (2011). PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution 2, 229–232.
PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2.Crossref | GoogleScholarGoogle Scholar |

Saint-Paul, U., Zuanon, J., Correa, M. A. V., García, M., Fabré, N. N., Berger, U., and Junk, W. J. (2000). Fish communities in central Amazonian white- and blackwater floodplains. Environmental Biology of Fishes 57, 235–250.
Fish communities in central Amazonian white- and blackwater floodplains.Crossref | GoogleScholarGoogle Scholar |

Sambrook, J., Fritscher, E. F., and Maniatis, T. (1989). ‘Molecular Cloning: A Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: New York.)

Silva, M. A. (2006). Variações morfo-merísticas da manjuba Lycengraulis grossidens (Agassiz, 1829) ao longo da costa brasileira. Ph.D. Thesis, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro.

Smouse, P. E., Long, J. C., and Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35, 627–632.
Multiple regression and correlation extensions of the Mantel test of matrix correspondence.Crossref | GoogleScholarGoogle Scholar |

Tajima, F. (1989). Statistical methods for testing the neutral mutation hypotesis by DNA polymorphism. Genetics 123, 585–595.
| 2513255PubMed |

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 17488738PubMed |

Tomazelli, L. J., and Villwock, J. A. (2005). Mapeamento geológico de planícies costeiras: o exemplo da costa do Rio Grande do Sul. Gravel 3, 109–115.

Vasconcellos, A. V., Vianna, P., Paiva, P. C., Schama, R., and Solé-Cava, A. (2008). Genetic and morphometric differences between yellowtail snapper (Ocyurus chrysurus, Lutjanidae) populations of the tropical West Atlantic. Genetics and Molecular Biology 31, 308–316.
Genetic and morphometric differences between yellowtail snapper (Ocyurus chrysurus, Lutjanidae) populations of the tropical West Atlantic.Crossref | GoogleScholarGoogle Scholar |

Ward, R. D., Woodwark, M., and Skibinski, D. O. F. (1994). A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. Journal of Fish Biology 44, 213–232.
A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes.Crossref | GoogleScholarGoogle Scholar |

Whitehead, P. J. P., Nelson, G. J., and Wongratana, T. (1988). ‘Clupeoid Fishes of the World (Suborder Clupeoidei). An Annotated and Illustrated Catalogue of the Herrings, Sardines, Pilchards, Sprats, Shads, Anchovies and Wolf-herrings.’ (FAO: Rome.)

Zhou, J., Liu, X., Stones, D. S., Xie, Q., and Wang, G. (2011). MrBayes on a graphics processing unit. Bioinformatics 27, 1255–1261.
MrBayes on a graphics processing unit.Crossref | GoogleScholarGoogle Scholar | 21414986PubMed |